【题目】动点
到直线
的距离比它到点
的距离大1.
(1)求点
的轨迹
的方程;
(2)过定点
作直线
,与(1)中的轨迹
相交于
、
两点,
为点
关于原点
的对称点,证明:
;
(3)在(2)中,是否存在垂直于
轴的直线
被以
为直径的圆截得的弦长恒为定值?若存在求出
的方程;若不存在,请说明理由.
【答案】(1)
;(2)证明见解析;(3)不存在,理由见解析.
【解析】
(1)根据题意结合抛物线的定义可以求出点
的轨迹
的方程;
(2)设出直线方程,与抛物线方程联立,得到一个一元二次方程,结合一元二次方程根与系数关系只要证明直线
斜率之和为零即可;
(3)求出以
为直径的圆的圆心和半径,利用垂径定理求出弦长,判断是不是定值即可.
(1)因为动点
到直线
的距离比它到点
的距离大1,所以动点
到直线
的距离等于它到点
的距离,由抛物线的定义可知:点
的轨迹
是以
为焦点,原点为顶点的抛物线, 因此
,所以点
的轨迹
的方程是
;
(2)由题意可设直线
的方程为:
与抛物线方程联立得:
,设
、
两点坐标为:![]()
所以有
.
由题意可知:
,直线
斜率分别记作:![]()
所以有
,
所以
;
(3) 以
为直径的圆的圆心和半径分别为:
,设直线
的方程为
,直线
与以
为直径的圆相交的弦长为
,由圆的垂径定理可知:
,化简得:
显然不是定值,故不存在直线
被以
为直径的圆截得的弦长恒为定值.
科目:高中数学 来源: 题型:
【题目】以下四个命题中真命题的序号是( ).
①平面内到两定点距离之比等于常数
的点的轨迹是圆;
②平面内与定点A(-3,0)和B(3,0)的距离之差等于4的点的轨迹为
;
③点P是抛物线
上的动点,点P在x轴上的射影是M,点A的坐标是
,则
的最小值是
;
④已知P为抛物线
上一个动点,Q为圆
上一个动点,那么点P到点Q的距离与点P到抛物线的准线距离之和的最小值是![]()
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
为双曲线
:
的左、右焦点,过
作垂直于
轴的直线,在
轴上方交双曲线C于点
,且![]()
(1)求双曲线C的方程;
(2)若直线
与双曲线C恒有两个不同交点P和Q且
(其中O为原点),求k的取值范围;
(3)过双曲线C上任意一点R作该双曲线两条渐近线的垂线,垂足分别为M,N,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】命题
:方程
表示焦点在
轴上的双曲线:命题
:若存在
,使得
成立.
(1)如果命题
是真命题,求实数
的取值范围;
(2)如果“
”为假命题,“
”为真命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将编号为1、2、3、4的四个小球随机的放入编号为1、2、3、4的四个纸箱中,每个纸箱有且只有一个小球,称此为一轮“放球”.设一轮“放球”后编号为
的纸箱放入的小球编号为
,定义吻合度误差为
![]()
(1) 写出吻合度误差
的可能值集合;
(2) 假设
等可能地为1,2,3,4的各种排列,求吻合度误差
的分布列;
(3)某人连续进行了四轮“放球”,若都满足
,试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮“放球”相互独立);
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com