分析 (1)由正弦定理化简已知可得:sinA=$\sqrt{3}$sinCsinA-sinAcosC,由sinA≠0,可得:2sin(C-$\frac{π}{6}$)=1,结合范围0<C<π,-$\frac{π}{6}$<C-$\frac{π}{6}$<$\frac{5π}{6}$,即可解得C的值.
(2)由余弦定理可得:4=(a+b)2-3ab,①,由△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,解得:ab=4,②,由①②即可解得:a=b=2.
解答 解:(1)∵a=$\sqrt{3}$csinA-acosC.
∴由正弦定理可得:sinA=$\sqrt{3}$sinCsinA-sinAcosC,
∵sinA≠0,
∴1=$\sqrt{3}$sinC-cosC,可得:2sin(C-$\frac{π}{6}$)=1,
∵0<C<π,-$\frac{π}{6}$<C-$\frac{π}{6}$<$\frac{5π}{6}$,
∴C-$\frac{π}{6}$=$\frac{π}{6}$,解得:C=$\frac{π}{3}$.
(2)∵c=2,
∴由余弦定理可得:4=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab,①,
∵△ABC的面积为$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab,解得:ab=4,②
∴由①②解得:a=b=2.
点评 本题主要考查了正弦定理,余弦定理,三角形面积公式,熟练掌握和灵活应用相关公式是解题的关键,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1<a<$\frac{1}{3}$ | B. | a<$\frac{1}{3}$ | C. | a>$\root{3}{3}$ | D. | $\frac{1}{3}$<a<$\root{3}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m∥n,n?α,则m∥α | B. | 若m∥α,n?α,则m∥n | C. | 若m∥α,n∥α,则m∥n | D. | 若m⊥α,n⊥α,则m∥n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com