精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(I)求椭圆E的方程;
(Ⅱ)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(Ⅲ)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.
(Ⅰ)∵2a=2•2b,∴a=2b.
设椭圆方程为
x2
2b2
+
y2
b2
=1

椭圆E过点C(2,1),
代入椭圆方程得
22
4b2
+
1
b2
=1
,解得b=
2
,则a=2
2

所以所求椭圆E的方程为
x2
8
+
y2
2
=1

(Ⅱ)依题意得D(-2,-1)在椭圆E上.
CP和DP的斜率KCP和KDP均存在.
设P(x,y),则kCP=
y-1
x-2
kDP=
y+1
x+2

kCPkDP=
y-1
x-2
y+1
x+2
=
y2-1
x2-4

又∵点P在椭圆E上,
x2
8
+
y2
2
=1
,∴x2=8-4y2,代入①得,
kCPkDP=
y2-1
x2-4
=
y2-1
8-4y2-4
=-
1
4

所以CP和DP的斜率KCP和KDP之积为定值-
1
4

(Ⅲ)CD的斜率为
1
2
,∵CD平行于直线l,∴设直线l的方程为y=
1
2
x+t

y=
1
2
x+t
x2
8
+
y2
2
=1

消去y,整理得x2+2tx+(2t2-4)=0.
设M(x1,y1),N(x2,y2).
△=4t2-4(2t2-4)=4(4-t2)>0
x1+x2=-2t
x1x2=2t2-4
,得|MN|=
1+k2
|x1-x2|=
1+(
1
2
)2
(x1+x2)2-4x1x2

=
5
4
4t2-4(2t2-4)
=
5
4-t2
(-2<t<2)

d=
|t|
1+
1
4
=
2|t|
5

所以,S=
1
2
|MN|•d=
1
2
5
4-t2
2|t|
5
=|t|•
4-t2
=
t2(4-t2)
4
2
=2

当且仅当t2=4-t2时取等号,即t2=2时取等号
所以△MNC面积的最大值为2.
此时直线l的方程y=
1
2
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),焦点为F1、F2,双曲线G:x2-y2=m(m>0)的顶点是该椭圆的焦点,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D,已知三角形ABF2的周长等于8
2
,椭圆四个顶点组成的菱形的面积为8
2

(1)求椭圆E与双曲线G的方程;
(2)设直线PF1、PF2的斜率分别为k1和k2,探求k1和k2的关系;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0),以F1(-c,0)为圆心,以a-c为半径作圆F1,过点B2(0,b)作圆F1的两条切线,设切点为M、N.
(1)若过两个切点M、N的直线恰好经过点B1(0,-b)时,求此椭圆的离心率;
(2)若直线MN的斜率为-1,且原点到直线MN的距离为4(
2
-1),求此时的椭圆方程;
(3)是否存在椭圆E,使得直线MN的斜率k在区间(-
2
2
,-
3
3
)内取值?若存在,求出椭圆E的离心率e的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
 (1)求椭圆E的方程;
 (2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•佛山二模)已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个交点为F1(-
3
,0)
,而且过点H(
3
1
2
)

(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+y2=1
(a>1)的离心率e=
3
2
,直线x=2t(t>0)与椭圆E交于不同的两点M、N,以线段MN为直径作圆C,圆心为C
(Ⅰ)求椭圆E的方程;
(Ⅱ)当圆C与y轴相切的时候,求t的值;
(Ⅲ)若O为坐标原点,求△OMN面积的最大值.

查看答案和解析>>

同步练习册答案