精英家教网 > 高中数学 > 题目详情

【题目】如图,已知,B为AC的中点,分别以AB,AC为直径在AC的同侧作半圆,M,N分别为两半圆上的动点不含端点A,B,,且,则的最大值为______

【答案】4

【解析】

以A为坐标原点,AC所在直线为x轴,建立如图所示的直角坐标系,求得A,B,C的坐标,可得以AB为直径的半圆方程,以AC为直径的半圆方程,设出M,N的坐标,

由向量数量积的坐标表示,结合三角函数的恒等变换可得,再由余弦函数、二次函数的图象和性质,计算可得最大值.

以A为坐标原点,AC所在直线为x轴,建立如图所示的直角坐标系,

可得

以AB为直径的半圆方程为

以AC为直径的半圆方程为

,可得

即有

即为

即有

,可得,即

可得,即时,的最大值为4.

故答案为:4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)

判断函数极值点的个数,并说明理由;

,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于AB两点,已知AB的横坐标分别为

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左右焦点,左右顶点为是双曲线上任意一点,则分别以线段为直径的两圆的位置关系为( )

A. 相交B. 相切C. 相离D. 以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)在圆内直径所对的圆周角是直角.此定理在椭圆内(以焦点在轴上的标准形式为例)可表述为“过椭圆的中心的直线交椭圆于两点,点是椭圆上异于的任意一点,当直线斜率存在时,它们之积为定值.”试求此定值;

(2)在圆内垂直于弦的直径平分弦.类比(1)将此定理推广至椭圆,不要求证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处与直线相切,求的值;

2)在(1)的条件下,求上的最大值;

3)若不等式对所有的都成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,点P是椭圆上任意一点,则点P到直线AB的距离最大值为( )

A. B. C. 6D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°AC=AB=AA1EBC的中点.

1)求证:AEB1C

2)求异面直线AEA1C所成的角的大小;

3)若GC1C中点,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高,而从事水果加工的农民平均每户收入将为万元.

1)若动员户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求的取值范围;

2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求的最大值.

查看答案和解析>>

同步练习册答案