精英家教网 > 高中数学 > 题目详情
8.已知数列{an}中,a1=1,2nan+1=(n+1)an
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn ,证明:Sn<4.

分析 (1)通过对2nan+1=(n+1)an变形可知数列{$\frac{{a}_{n}}{n}$}是以1为首项、$\frac{1}{2}$为公比的等比数列,进而计算可得结论;
(2)通过an=$\frac{n}{{2}^{n-1}}$,利用错位相减法计算即得结论.

解答 (1)解:∵2nan+1=(n+1)an
∴$\frac{{a}_{n+1}}{n+1}$=$\frac{1}{2}$•$\frac{{a}_{n}}{n}$,
又∵$\frac{{a}_{1}}{1}$=a1=1,
∴$\frac{{a}_{n}}{n}$=1•$\frac{1}{{2}^{n-1}}$=$\frac{1}{{2}^{n-1}}$,
∴an=n•$\frac{1}{{2}^{n-1}}$=$\frac{n}{{2}^{n-1}}$;
(2)证明:∵an=$\frac{n}{{2}^{n-1}}$,
∴Sn=1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{{2}^{1}}$+3•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}•$Sn=1•$\frac{1}{{2}^{1}}$+2•$\frac{1}{{2}^{2}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
两式相减得:$\frac{1}{2}•$Sn=$\frac{1}{{2}^{0}}$+$\frac{1}{{2}^{1}}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$
=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$
=2-$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$,
$\frac{1}{2}-(n+\frac{1}{2})•\frac{1}{{2}^{n}}$,
∴Sn=2(2-$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$)=4-$\frac{n+2}{{2}^{n-1}}$<4.

点评 本题考查数列的通项及前n项和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届江西南昌新课标高三一轮复习训练三数学试卷(解析版) 题型:解答题

已知函数

(1)若,求的值;

(2)若对于恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:解答题

设函数

(1)当时,求曲线处的切线方程;

(2)当时,设函数,若对于,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据,计算得回归直线方程为$\hat y$=0.85x-0.25.由以上信息,得到下表中c的值为3.
天数t(天)34567
繁殖个数y(千个)2.5c44.56

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知在等差数列{an}中,a2=3,a6=11,记数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和为Sn,若Sn≤$\frac{m}{10}$对n∈N*恒成立,则正整数m的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$=(3,0),$\overrightarrow{b}$=(0,2),若向量$\overrightarrow{c}$满足($\overrightarrow{a}-\overrightarrow{c}$)⊥($\overrightarrow{c}-\overrightarrow{b}$),求|$\overrightarrow{c}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=ex-lnx-2.
(1)当x>0时,求证:f(x)>0.
(2)当x≥1时,若不等式ex+$\frac{3}{2}$≥2ax+$\frac{3}{2}$-a≥lnx+2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-kx2,x∈R.
(1)若f(x)在区间(0,+∞)上单调递增,求k的取值范围;
(2)①当k=$\frac{1}{2}$,x∈(0,+∞)时,求证:f(x)>1;
②求证:($\frac{2}{{1}^{4}}$+1)($\frac{2}{{2}^{4}}$+1)($\frac{2}{{3}^{4}}$+1)…($\frac{2}{{n}^{4}}$+1)<e4(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且$\frac{2}{y}+\frac{8}{x}$=1,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

同步练习册答案