精英家教网 > 高中数学 > 题目详情
17.为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据,计算得回归直线方程为$\hat y$=0.85x-0.25.由以上信息,得到下表中c的值为3.
天数t(天)34567
繁殖个数y(千个)2.5c44.56

分析 利用回归直线经过样本中心直接求解即可.

解答 解:由题意可知$\overline{x}=\frac{3+4+5+6+7}{5}$=5,$\overline{y}$=$\frac{2.5+c+4+4.5+6}{5}$=$\frac{17+c}{5}$,
因为回归直线经过样本中心,
所以:$\frac{17+c}{5}$=0.85×5-0.25,
解得c=3.
故答案为:.

点评 本题考查回归直线方程的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)已知${C}_{15}^{3x-2}$=${C}_{15}^{x+1}$,求${C}_{10}^{x-1}$的值;
(2)若($\root{3}{x}$-$\frac{1}{x}$)n(n∈N)的展开式中第3项为常数项,求n.

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(文)试卷(解析版) 题型:选择题

已知函数,当时,取得最小值,则函数

的图象为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.若实数m,n为关于x的一元二次方程Ax2+Bx+C=0的两个实数根,则有Ax2+Bx+C=A(x-m)(x-n),由系数可得:$m+n=-\frac{B}{A},且m•n=\frac{C}{A}$.设x1,x2,x3为关于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三个实数根.
(1)写出三次方程的根与系数的关系;即x1+x2+x3=a;x1x2+x2x3+x3x1=b;x1•x2•x3=c
(2)若a,b,c均大于零,试证明:x1,x2,x3都大于零;
(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β处取得极值,且-1<α<0<β<1,求方程f(x)=0三个实根两两不相等时,实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力(  )
A.平均数B.方差C.回归分析D.独立性检验

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点F(c,0)分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点和上顶点,点B为直线l“x=$\frac{{a}^{2}}{c}$”上的一动点,且△ABF的外接圆面积最小值是4π,则当椭圆的短轴最长时,椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}中,a1=1,2nan+1=(n+1)an
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn ,证明:Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由“正三角形的内切圆切于三边的中点”可类比猜想:“正四面体的内切球切于四个面各正三角形的中心.”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由a1=1,d=3确定的等差数列{an},当an=292时,序号n等于98.

查看答案和解析>>

同步练习册答案