精英家教网 > 高中数学 > 题目详情
5.由a1=1,d=3确定的等差数列{an},当an=292时,序号n等于98.

分析 由题意和等差数列的通项公式可得n的方程,解方程可得.

解答 解:由题意可得an=a1+d=1+3(n-1)=3n-2,
解方程3n-2=292可得n=98
故答案为:98

点评 本题考查等差数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据,计算得回归直线方程为$\hat y$=0.85x-0.25.由以上信息,得到下表中c的值为3.
天数t(天)34567
繁殖个数y(千个)2.5c44.56

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ex-kx2,x∈R.
(1)若f(x)在区间(0,+∞)上单调递增,求k的取值范围;
(2)①当k=$\frac{1}{2}$,x∈(0,+∞)时,求证:f(x)>1;
②求证:($\frac{2}{{1}^{4}}$+1)($\frac{2}{{2}^{4}}$+1)($\frac{2}{{3}^{4}}$+1)…($\frac{2}{{n}^{4}}$+1)<e4(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的首项a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n∈N*
(1)求证:数列{$\frac{1}{{a}_{n}}$-1}为等比数列;
(2)记Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,若Sn<100,求满足条件的最大正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\left\{\begin{array}{l}f(x+3),\;x<1\\{log_2}x,\;x≥1\end{array}$,则f(-1)的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx+c在x=0处取得极大值2,其图象在x=1处的切线与直线x-3y+2=0垂直.
(1)求f(x)的解析式;
(2)当x∈(-∞,$\sqrt{3}$]时,不等式xf′(x)≤m-6x2+9x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x>0,y>0,且$\frac{2}{y}+\frac{8}{x}$=1,求:
(1)xy的最小值;
(2)x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在1,2,3,…,14中,按数从小到大的顺序取出a1,a2a3,使同时满足a2-a1≥4,a3-a2≥4,则符合要求的不同取法有56种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过原点作曲线y=lnx的切线,则切线斜率为(  )
A.e2B.$\frac{1}{{e}^{2}}$C.eD.$\frac{1}{e}$

查看答案和解析>>

同步练习册答案