【题目】已知两个无穷数列和的前项和分别为、,,,对任意的,都有.
(1)求数列的通项公式;
(2)若为等差数列,对任意的,都有,证明:;
(3)若为等比数列,,,求满足()的的值.
【答案】(1);(2)证明见解析;(3)1或2.
【解析】
(1)运用数列的递推式和等差数列的定义和通项公式,即可得到所求;
(2)设数列{bn}的公差为d,求出Sn,Tn.由恒成立思想可得b1<1,求出an﹣bn,判断符号即可得证;
(3)运用等差数列和等比数列的求和公式,求得Sn,Tn,化简,推出小于3,结合等差数列的通项公式和数列的单调性,即可得到所求值.
(1)由3Sn+1=2Sn+Sn+2+an,得2(Sn+1﹣Sn)=Sn+2﹣Sn+1+an,
即2an+1=an+2+an,所以an+2﹣an+1=an+1﹣an.
由a1=1,S2=4,可知a2=3.
所以数列{an}是以1为首项,2为公差的等差数列.
故{an}的通项公式为an=1+2(n﹣1)=2n﹣1,n∈N*.
(2)设数列{bn}的公差为d,
则Tn=nb1n(n﹣1)d,
由(1)知,Snn(1+2n﹣1)=n2.
因为Sn>Tn,所以n2>nb1n(n﹣1)d,
即(2﹣d)n+d﹣2b1>0恒成立,
所以,即,
又由S1>T1,得b1<1,
所以an﹣bn=2n﹣1﹣b1﹣(n﹣1)d=(2﹣d)n+d﹣1﹣b1≥2﹣d+d﹣1﹣b1=1﹣b1>0.
所以an>bn,得证.
(3)由(1)知,Sn=n2.因为{bn}为等比数列,
且b1=1,b2=3,
所以{bn}是以1为首项,3为公比的等比数列.
所以bn=3n﹣1,Tn(3n﹣1).
则3,
因为n∈N*,所以6n2﹣2n+2>0,所以3.
而ak=2k﹣1,所以1,即3n﹣1﹣n2+n﹣1=0(*).
当n=1,2时,(*)式成立;
当n≥2时,设f(n)=3n﹣1﹣n2+n﹣1,
则f(n+1)﹣f(n)=3n﹣(n+1)2+n﹣(3n﹣1﹣n2+n﹣1)=2(3n﹣1﹣n)>0,
所以0=f(2)<f(3)<…<f(n)<…,
故满足条件的n的值为1和2.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(α为参数),将C上每一点的横坐标保持不变,纵坐标变为原来的3倍,得曲线C1.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程
(2)设M,N为C1上两点,若OM⊥ON,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i(i=1,2,…,10)个人的水桶需Ti分钟,假设Ti各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( )
A. 从Ti中最大的开始,按由大到小的顺序排队
B. 从Ti中最小的开始,按由小到大的顺序排队
C. 从靠近Ti平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队
D. 任意顺序排队接水的总时间都不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.现从参与调查的人群中随机选出人,并将这人按年龄分组:第1组,第2组,第3组,第4 组,第5组,得到的频率分布直方图如图所示
(1) 求的值
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取人,再从这人中随机抽取人进行问卷调查,求在第1组已被抽到人的前提下,第3组被抽到人的概率;
(3)若从所有参与调查的人中任意选出人,记关注“生态文明”的人数为,求的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于无穷数列,若对任意,满足且(是与无关的常数),则称数列为数列.
(1)若(),判断数列是否为数列,说明理由;
(2)设,求证:数列是数列,并求常数的取值范围;
(3)设数列(,),问数列是否为数列?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆过定点,圆心在抛物线上,、为圆与轴的交点.
(1)求圆半径的最小值;
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论;
(3)当圆心在抛物线上运动时,记,,求的最大值,并求此时圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列满足:①;②所有项;③ .
设集合,将集合中的元素的最大值记为.换句话说, 是
数列中满足不等式的所有项的项数的最大值.我们称数列为数列的
伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.
(1)若数列的伴随数列为1,1,1,2,2,2,3,请写出数列;
(2)设,求数列的伴随数列的前100之和;
(3)若数列的前项和(其中常数),试求数列的伴随数列前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点为抛物线的焦点,点在抛物线上,且.
(1)求抛物线的方程;
(2)已知点,延长交抛物线于点,证明:以点为圆心且与直线相切的圆,必与直线相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设分别是椭圆的左、右焦点.
(1)若是该椭圆上的一个动点,求的最大值和最小值;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com