精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面为一直角梯形,其中底面的中点.

(Ⅰ)求证://平面
(Ⅱ)若平面,求平面与平面夹角的余弦值.

(1)要证明线面平行,可以建立直角坐标系,然后借助于平面的法向量以直线的方向向量得垂直关系来证明。
(2)

试题分析:设,建立空间坐标系,使得
,
.      2分
(Ⅰ)
所以
平面平面.                   5分
(Ⅱ)平面,即
,即.
平面和平面中,
所以平面的一个法向量为;平面的一个法向量为
,所以平面与平面夹角的余弦值为.     12分
点评:主要是考查了运用空间向量来证明垂直以及二面角的平面角的 求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

为正方形的中心,四边形是平行四边形,且平面平面,若.

(1)求证:平面.
(2)线段上是否存在一点,使平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体中,分别为棱的中点,则在空间中与直线、CD都相交的直线有
A.1条B.2条C.3条D.无数条

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知各顶点都在同一个球面上的正四棱锥高为3,体积为6,则这个球的表面积是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.

(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.

(Ⅰ)求证AM//平面BDE;
(Ⅱ)求二面角A-DF-B的大小;
(Ⅲ)试在线段AC上确定一点P,使得PF与BC所成的角是60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为             

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点EF分别在棱BB1CC1上,且BEBBC1FCC1.

(1)求异面直线AEA1 F所成角的大小;
(2)求平面AEF与平面ABC所成角的余弦值.

查看答案和解析>>

同步练习册答案