精英家教网 > 高中数学 > 题目详情
6.在△ABC中,a2-b2-c2-bc=0,则A等于(  )
A.60°B.45°C.120°D.30°

分析 先根据a2=b2+bc+c2,求得bc=-(b2+c2-a2)代入余弦定理中可求得cosA,进而求得A.

解答 解:根据余弦定理可知cosA=$\frac{{c}^{2}+{b}^{2}-{a}^{2}}{2bc}$
∵a2-b2-c2-bc=0,可得a2=b2+bc+c2
∴bc=-(b2+c2-a2
∴cosA=-$\frac{1}{2}$
∴A=120°
故选:C.

点评 本题主要考查了余弦定理的应用.属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{2}(x≤0)}\\{f(x-2)+2(x>0)}\end{array}\right.$,把方程f(x)-x=0的实数解按从小到大的顺序排列成一个数列$\left\{{a_n}\right\}(n∈{N^*})$,设$h(x)=x+{log_2}\frac{2+x}{8-x}$,则数列{h(an)}的各项之和为(  )
A.36B.33C.30D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,若$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$,则△ABC的形状是(  )
A.等边三角形B.直角三角形C.等腰直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出命题“如果xy=0,则x=0或y=0”的逆命题、否命题、逆否命题,并判断其真假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=$\frac{x}{e^x}$,f1(x)=f′(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*,经计算得:f1(x)=$\frac{1-x}{e^x}$,f2(x)=$\frac{x-2}{e^x}$,那么f3(x)=$\frac{3-x}{e^x}$
根据以上计算所得规律,可推出fn(x)=$\frac{{{{(-1)}^n}(x-n)}}{e^x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若f(x)=2cos2x+$\sqrt{3}$sin2x+a(a为常数)在[0,$\frac{π}{2}$]上的最小值为-3,则a的值为(  )
A.4B.-3C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,小正六边形沿着大正六边形的边,按顺时针方向滚动,小正六边形的边长是大正六边形边长的一半.当小正六边形沿着大正六边形的边滚动4周后返回出发时的位置,记在这个过程中向量$\overrightarrow{OA}$围绕着点O旋转θ角(其中O为小正六边形的中心),则sin$\frac{θ}{36}$等于-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.椭圆与双曲线有许多优美的对称性质.对于椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)有如下命题:AB是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=-$\frac{b^2}{a^2}$,为定值.那么对于双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)则有命题:AB是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的不平行于对称轴且不过原点的弦,M为AB的中点,则kOM•kAB=定值$\frac{b^2}{a^2}$.(在横线上填上正确的结论)并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设{an}为等比数列,下列命题正确的有①②④(写出所有正确命题的序号)
①设${b_n}={a_n}^2$,则 {bn}为等比数列;
②若an>0,设cn=lnan,则 {cn}为等差数列;
③设{an}前n项和为Sn,则Sn,S2n-Sn,S3n-S2n成等比数列;
④设{an}前n项积为Tn,则${T_n}^2={({{a_1}{a_n}})^n}$.

查看答案和解析>>

同步练习册答案