精英家教网 > 高中数学 > 题目详情
5.对于函数f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$,有下列5个结论:
①任取x1,x2∈[0,+∞),都有|f(x1)-f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)-ln(x-1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1,x2,则x1+x2=3.
则其中所有正确结论的序号是①④⑤.(请写出全部正确结论的序号)

分析 作出f(x)=$\left\{\begin{array}{l}{sinπx,\;\;\;x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$的图象,分别利用函数的性质进行判断即可.

解答 解:f(x)=$\left\{\begin{array}{l}{sinπx,\;\;\;x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$的图象如图所示:
①∵f(x)的最大值为1,最小值为-1,
∴任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立,故①正确;
②函数在区间[4,5]上的单调性和[0,1]上的单调性相同,则函数y=f(x)在区间[4,5]上不单调;故②错误;
③f($\frac{1}{2}$)=2f($\frac{1}{2}$+2)=4f($\frac{1}{2}$+4)=6f($\frac{1}{2}$+6)≠8f($\frac{1}{2}$+8),故不正确;故③错误,
④如图所示,函数y=f(x)-ln(x-1)有3个零点;故④正确,
⑤当1≤x≤2时,函数f(x)关于x=$\frac{3}{2}$对称,若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1,x2
则$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{3}{2}$,则x1+x2=3成立,故⑤正确,
故答案为:①④⑤.

点评 本题主要考查命题的真假判断,涉及函数的性质,利用分段函数的表达式,作出函数的图象,利用数形结合是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数y=cos2x的图象关于($\frac{π}{4}$+$\frac{kπ}{2}$,0)或直线x=$\frac{kπ}{2}$,k∈Z对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增加b人.假设每个窗口的售票速度为c人/min,且当开放2个窗口时,25min后恰好不会出现排队现象(即排队的人刚好购完);若同时开放3个窗口,则15min后恰好不会出现排队现象.若要求售票10min后不会出现排队现象,则至少需要同时开几个窗口?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB中点,F是DC上的点,且$DF=\frac{1}{2}AB,PH$为△PAD中AD边上的高.
(Ⅰ)证明:PH⊥平面ABCD;
(Ⅱ)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积;
(Ⅲ)证明:EF⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,ABCD-A1B1C1D1为正方体.
(1)求证:B1D1∥平面BC1D;
(2)求异面直线B1D1与BC1所成角的大小;
(3)求证BD⊥平面ACC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.
(1)求证:AD1⊥平面A1DC;
(2)求MN与平面ABCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数中,在定义域内既是奇函数又是增函数的为(  )
A.y=x+1B.y=-x3C.y=$\frac{1}{x}$D.y=x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列命题:
(1)底面是矩形的平行六面体是长方体;
(2)底面是正方形的直平行六面体是正四棱柱;
(3)底面是正方形的直四棱柱是正方体;
(4)所有棱长都相等的直平行六面体是正方体.
以上命题中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1,F2,斜率为-$\frac{1}{2}$的直线l于椭圆C1交于E,F两点,若点M(1,1)满足$\overrightarrow{EM}$+$\overrightarrow{FM}$=$\overrightarrow{0}$,$\overrightarrow{{F}_{1}M}$$•\overrightarrow{{F}_{2}M}$=0.
(1)求椭圆C1的标准方程
(2)设O为坐标原点,若点A在椭圆C1上,点B在直线y=2上,以AB为直径的圆经过原点,求证:原点到直线AB的距离为定值.

查看答案和解析>>

同步练习册答案