精英家教网 > 高中数学 > 题目详情
10.如图所示,在正方体ABCD-A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.
(1)求证:AD1⊥平面A1DC;
(2)求MN与平面ABCD所成的角.

分析 (1)利用正方体中的棱与面的关系可得CD⊥平面ADD1A1,进一步得到CD⊥AD1,再结合AD1⊥A1D,运用线面垂直的判定得答案;
(2)由已知MN⊥平面A1DC结合(1)的结论可得AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,进一步可得∠D1AD即为AD1与平面ABCD所成的角,则答案可求.

解答 (1)证明:由ABCD-A1B1C1D1为正方体,得CD⊥平面ADD1A1
AD1?平面ADD1A1
∴CD⊥AD1
又AD1⊥A1D,且A1D∩CD=D,
∴AD1⊥平面A1DC;
(2)解:∵MN⊥平面A1DC,
又由(1)知AD1⊥平面A1DC,
∴MN∥AD1
∴AD1与平面ABCD所成的角,就是MN与平面ABCD所成的角,
∵D1D⊥平面ABCD,
∴∠D1AD即为AD1与平面ABCD所成的角,
由正方体可知$∠{D}_{1}AD=\frac{π}{4}$,
∴MN与平面ABCD所成的角为$\frac{π}{4}$.

点评 本题考查直线与平面垂直的判断,考查了线面角,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在(x-y)n展开式中,偶数项的系数之和为-256.
求(1)n;
(2)系数的最大和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如右图,三棱锥A-BCD中,所有棱长都为2,点E、F分别是AB,AD中点,则$\overrightarrow{EF}•\overrightarrow{BC}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在四棱锥E-ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(Ⅰ)求证:DE∥平面ACF;
(Ⅱ)求证:BD⊥AE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于函数f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\end{array}\right.$,有下列5个结论:
①任取x1,x2∈[0,+∞),都有|f(x1)-f(x2)|≤2;
②函数y=f(x)在区间[4,5]上单调递增;
③f(x)=2kf(x+2k)(k∈N+),对一切x∈[0,+∞)恒成立;
④函数y=f(x)-ln(x-1)有3个零点;
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同实根x1,x2,则x1+x2=3.
则其中所有正确结论的序号是①④⑤.(请写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,某流动海洋观测船开始位于灯塔B的北偏东θ(0<θ<$\frac{π}{2}$)方向,且满足2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ=1,AB=AD,在接到上级命令后,该观测船从A点位置沿AD方向在D点补充物资后沿BD方向在C点投浮标,使得C点于A点的距离为4$\sqrt{3}$km,则该观测船行驶的最远航程为8km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列等式中,正确的个数是(  )
(1)$\root{n}{a^n}=|a|$;            
(2)若a∈R,则(a2-a+1)0=1;
(3)$\root{3}{{{x^4}+{y^3}}}=\root{3}{x^4}+y$;    
(4)$\root{3}{-1}=\root{6}{{{{(-1)}^2}}}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y=\frac{4-cosx}{2cosx+3}$的值域为$[\frac{3}{5},5]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足a1=1,a2=2,an+2-an=1+(-1)n,则数列{an}的前30项的和为255.

查看答案和解析>>

同步练习册答案