分析 利用条件2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ=1,0<θ<$\frac{π}{2}$,求出θ,得出AD+DC=BC,求该观测船行驶的最远航程,即求BC的最大值,当且仅当BC为△ABC的外接圆的直径时,取得最大值,由正弦定理可得结论.
解答 解:∵2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ=1,
∴2sin2($\frac{π}{4}$+θ)-1=$\sqrt{3}$cos2θ,
∴-cos($\frac{π}{2}$+2θ)=$\sqrt{3}$cos2θ,
∴sin2θ-$\sqrt{3}$cos2θ=0
∴2sin(2θ-$\frac{π}{3}$)=0,
∵0<θ<$\frac{π}{2}$,
∴θ=$\frac{π}{6}$,
∴∠ABC=$\frac{π}{3}$,
∵AB=AD,∴AB=AD=BD,
∴AD+DC=BC,
求该观测船行驶的最远航程,即求BC的最大值,当且仅当BC为△ABC的外接圆的直径时,取得最大值,
由正弦定理可得2R=$\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8.
故答案为:8.
点评 本题考查三角函数公式的运用,考查正弦定理,解题时,求该观测船行驶的最远航程,转化为求BC的最大值,当且仅当BC为△ABC的外接圆的直径时,取得最大值是关键.
科目:高中数学 来源: 题型:选择题
| A. | α⊥β且m⊆α | B. | m⊥n且n⊆β | C. | α⊥β且m∥α | D. | m⊥n且n∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | α内有无数条直线都与β平行 | |
| B. | 直线a?α,直线b?β,且a∥β,b∥α | |
| C. | α内的任何直线都与β平行 | |
| D. | 直线a∥α,a∥β,且直线a不在α内,也不在β内 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 48 | B. | 60 | C. | 72 | D. | 84 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日需求量 | 3 | 4 | 5 | 6 | 7 |
| 频数 | 2 | 3 | 15 | 6 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com