4£®Â³°àËø£¬ÊÇÖйú´«Í³µÄÖÇÁ¦Íæ¾ß£¬ÆðÔ´ÓڹŴúºº×彨ÖþÖÐÊ×´´µÄé¾Ã®½á¹¹£¬ÕâÖÖÈýάµÄÆ´²åÆ÷¾ßÄÚ²¿µÄ°¼Í¹²¿·Ö£¨¼´é¾Ã®½á¹¹£©ÄöºÏ£¬Ê®·ÖÇÉÃԭΪľÖʽṹ£¬Íâ¹Û¿´ÊÇÑÏË¿ºÏ·ìµÄÊ®×ÖÁ¢·½Ì壬ÆäÉÏÏ£¬×óÓÒ£¬Ç°ºóÍêÈ«¶Ô³Æ£¬´ÓÍâ±íÉÏ¿´£¬Áù¸ùµÈ³¤µÄÕýËÄÀâÖùÌå·Ö³ÉÈý×飬¾­90¶Èé¾Ã®ÆðÀ´£¬ÈôÕýËÄÀâÖùÌåµÄ¸ßΪ4£¬µ×ÃæÕý·½Ðεı߳¤Îª1£¬Ôò¸Ã³°àËøµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®48B£®60C£®72D£®84

·ÖÎö °Ñ¸´ÔÓµÄͼÐαíÃæ»ýÓÃÈýÊÓͼͶӰµÄ·½·¨¼ÆËãÇóµÃ£¬»­³ö¸Ã¼¸ºÎÌåÔÚÒ»¸öÆ½ÃæÉϵÄͶӰ£¬¼ÆËãÍ¶Ó°Ãæ»ý£¬¹²ÓÐ6¸öÍ¶Ó°Ãæ»ý£¬´Ó¶øÇó³ö¼¸ºÎÌåµÄ±íÃæ»ý£®

½â´ð ½â£º¸´ÔÓµÄͼÐαíÃæ»ý¿ÉÒÔÓÃÈýÊÓͼͶӰµÄ·½·¨¼ÆËãÇóµÃ£»
ÈçͼËùʾ£º
Í¶Ó°Ãæ»ýΪ4¡Á2+1¡Á2=10£¬
¹²ÓÐ6¸öÍ¶Ó°Ãæ»ý£¬
ËùÒԸü¸ºÎÌåµÄ±íÃæ»ýΪ10¡Á6=60£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÁËÀûÓÃÈýÊÓͼͶӰµÄ·½·¨¼ÆË㸴ÔÓͼÐεıíÃæ»ýµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ô²ÖùÐβ£Á§±­¸ß8cm£¬±­¿ÚÖܳ¤Îª12cm£¬Äڱھ౭¿Ú2cmµÄµãA´¦ÓÐÒ»µãÃÛÌÇ£®AµãÕý¶ÔÃæµÄÍâ±Ú£¨²»ÊÇAµãµÄÍâ±Ú£©¾à±­µ×2cmµÄµãB´¦ÓÐһС³æ£®ÈôС³æÑر­±ÚÅÀÏòÃÛÌDZ¥Ê³Ò»¶Ù£¬×îÉÙÒªÅÀ¶àÉÙ10cm£®£¨²»¼Æ±­±Úºñ¶ÈÓëС³æµÄ³ß´ç£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬Ä³Á÷¶¯º£Ñó¹Û²â´¬¿ªÊ¼Î»ÓÚµÆËþBµÄ±±Æ«¶«¦È£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©·½Ïò£¬ÇÒÂú×ã2sin2£¨$\frac{¦Ð}{4}$+¦È£©-$\sqrt{3}$cos2¦È=1£¬AB=AD£¬ÔÚ½Óµ½Éϼ¶ÃüÁîºó£¬¸Ã¹Û²â´¬´ÓAµãλÖÃÑØAD·½ÏòÔÚDµã²¹³äÎï×ʺóÑØBD·½ÏòÔÚCµãͶ¸¡±ê£¬Ê¹µÃCµãÓÚAµãµÄ¾àÀëΪ4$\sqrt{3}$km£¬Ôò¸Ã¹Û²â´¬ÐÐÊ»µÄ×îÔ¶º½³ÌΪ8km£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬µÈ¸ßµÄÕýÈýÀâ×¶P-ABCÓëÔ²×¶SOµÄµ×Ãæ¶¼ÔÚÆ½ÃæMÉÏ£¬ÇÒÔ²O¹ýµãA£¬ÓÖÔ²OµÄÖ±¾¶AD¡ÍBC£¬´¹×ãΪE£¬ÉèÔ²×¶SOµÄµ×Ãæ°ë¾¶Îª1£¬Ô²×¶¸ßΪ$\sqrt{3}$£®

£¨1£©ÇóÔ²×¶µÄ²àÃæ»ý£»
£¨2£©ÈôƽÐÐÓÚÆ½ÃæMµÄÒ»¸öÆ½ÃæN½ØµÃÈýÀâ×¶ÓëÔ²×¶µÄ½ØÃæÃæ»ýÖ®±ÈΪ$\frac{{\sqrt{3}}}{¦Ð}$£¬ÇóÈýÀâ×¶µÄ²àÀâPAÓëµ×ÃæABCËù³É½ÇµÄ´óС£®
£¨3£©ÇóÒìÃæÖ±ÏßABÓëSDËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êý$y=\frac{4-cosx}{2cosx+3}$µÄÖµÓòΪ$[\frac{3}{5}£¬5]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®°ÑÔ²ÖÜ8µÈ·Ö£¬µÃ8¸öµÈ·Öµã£¬ÒÔÕâЩµãΪ¶¥µã×÷Èý½ÇÐοɵÃ56¸öÈý½ÇÐΣ¬´ÓÕâЩÈý½ÇÐÎÖÐÈÎȡһ¸öÈý½ÇÐÎÊÇÈñ½ÇÈý½ÇÐεĸÅÂÊP=£¨¡¡¡¡£©
A£®$\frac{1}{7}$B£®$\frac{2}{7}$C£®$\frac{3}{7}$D£®$\frac{6}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ¡÷ABCÖУ¬¡ÏB=$\frac{¦Ð}{4}$£¬¡ÏC=$\frac{5¦Ð}{12}$£¬AC=2$\sqrt{6}$£¬ACµÄÖеãΪD£¬Èô³¤¶ÈΪ3µÄÏß¶ÎPQ£¨PÔÚQµÄ×ó²à£©ÔÚÖ±ÏßBCÉÏ»¬¶¯£¬ÔòAP+DQµÄ×îСֵΪ$\frac{3\sqrt{10}+\sqrt{30}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÎªÅäºÏÉϺ£µÏ˹ÄáÓÎÔ°¹¤×÷£¬Ä³µ¥Î»Éè¼ÆÈËÊýµÄÊýѧģÐÍ£¨n¡ÊN+£©£ºÒÔf£¨n£©=$\left\{\begin{array}{l}{200n+2000£¬n¡Ê[1£¬8]}\\{360•{3}^{\frac{n-8}{12}}+3000£¬n¡Ê[9£¬32]}\\{32400-720n£¬n¡Ê[33£¬45]}\end{array}\right.$±íʾµÚnʱ½øÈëÈËÊý£¬ÒÔg£¨n£©=$\left\{\begin{array}{l}{0£¬n[1£¬18]}\\{500n-9000£¬n¡Ê[19£¬32]}\\{8800£¬n¡Ê[33£¬45]}\end{array}\right.$±íʾµÚn¸öʱ¿ÌÀë¿ªÔ°ÇøµÄÈËÊý£»É趨ÒÔ15·ÖÖÓΪһ¸ö¼ÆË㵥룬ÉÏÎç9µã15·Ö×÷ΪµÚ1¸ö¼ÆËãÈËÊýµ¥Î»£¬¼´n=1£º9µã30·Ö×÷ΪµÚ2¸ö¼ÆË㵥룬¼´n=2£»ÒÀ´ËÀàÍÆ£¬°ÑÒ»ÌìÄÚ´ÓÉÏÎç9µãµ½ÍíÉÏ8µã15·Ö·Ö³É45¸ö¼ÆË㵥λ£º£¨×îºó½á¹ûËÄÉáÎåÈ룬¾«È·µ½ÕûÊý£©£®
£¨1£©ÊÔ¼ÆËãµ±Ìì14µãµ½15µãÕâÒ»¸öСʱÄÚ£¬½øÈëÔ°ÇøµÄÓοÍÈËÊýf£¨21£©+f£¨22£©+f£¨23£©+f£¨24£©¡¢Àë¿ªÔ°ÇøµÄÓοÍÈËÊýg£¨21£©+g£¨22£©+g£¨23£©+g£¨24£©¸÷Ϊ¶àÉÙ£¿
£¨2£©´Ó13µã45·Ö£¨¼´n=19£©¿ªÊ¼£¬ÓÐÓοÍÀë¿ªÔ°Çø£¬ÇëÄãÇó³öÕâÖ®ºóµÄÔ°ÇøÄÚÓοÍ×ÜÈËÊý×î¶àµÄʱ¿Ì£¬²¢ËµÃ÷ÀíÓÉ£º

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÊýÁÐ{an}µÄǰÏîºÍΪSn£¬µã£¨n£¬Sn£©ÔÚº¯Êýf£¨x£©=${¡Ò}_{1}^{x}$£¨2t+1£©dtµÄͼÏóÉÏ£¬ÔòÊýÁÐ{an}µÄͨÏʽΪ£¨¡¡¡¡£©
A£®an=2nB£®an=n2+n+2
C£®an=$\left\{\begin{array}{l}{0£¬n=1}\\{2n-1£¬n¡Ý2}\end{array}\right.$D£®an=$\left\{\begin{array}{l}{0£¬n=1}\\{2n£¬n¡Ý2}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸