精英家教网 > 高中数学 > 题目详情

(本题14分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

(Ⅰ)函数的单调递增区间为.(Ⅱ)

解析试题分析:(1)确定出函数的定义域是解决本题的关键,利用导数作为工具,求出该函数的单调递增区间即为f'(x)>0的x的取值区间;
(2)方法一:利用函数思想进行方程根的判定问题是解决本题的关键.构造函数,研究构造函数的性质尤其是单调性,列出该方程有两个相异的实根的不等式组,求出实数a的取值范围.
方法二:先分离变量再构造函数,利用函数的导数为工具研究构造函数的单调性,根据题意列出关于实数a的不等式组进行求解.
解:(Ⅰ)函数的定义域为,………………………1分
,………………………2分
,则使的取值范围为
故函数的单调递增区间为. …………………………4分
(Ⅱ)方法1:∵
.…………………6分
,              
,且

在区间内单调递减,在区间内单调递增,……………………9分
在区间内恰有两个相异实根……11分
解得:
综上所述,的取值范围是.………………13分
方法2:∵
.………………6分

, ∵,且

在区间内单调递增,在区间内单调递减.………9分

,故在区间内恰有两个相异实根.……11分

综上所述,的取值范围是.  …………………14分
考点:本试题主要考查了导数的工具作用,考查学生利用导数研究函数的单调性的知识.考查学生对方程、函数、不等式的综合问题的转化与化归思想,将方程的根的问题转化为函数的图象交点问题,属于综合题型
点评:解决该试题的关键将方程的根的问题转化为函数的图象交点问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
求下列函数的导数
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知为实数,
(Ⅰ)若a=2,求的单调递增区间;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,(),曲线在点处的切线垂直于轴.
(Ⅰ) 求的值;
(Ⅱ) 求函数的极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数
(1)求函数的单调递增区间;
(2)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
时,求的单调区间;
②若时,函数的图象总在函数的图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)设 
(1)若上递增,求的取值范围;
(2)若上的存在单调递减区间 ,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设
(1)求上的值域;
(2)若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案