精英家教网 > 高中数学 > 题目详情
5.集合P={y|y=-x2+2},Q={x|y=-x+2}则P∩Q是(  )
A.(0,2),(1,1)B.{(0,2),(1,1)}C.D.{y|y≤2}

分析 先分别求出集合P,Q,由此利用交集定义能求出P∩Q.

解答 解:∵集合P={y|y=-x2+2}={y|y≤2},
Q={x|y=-x+2}=R,
∴P∩Q={y|y≤2}.
故选:D.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为(  )
A.$\frac{x^2}{12}+\frac{y^2}{11}=1$B.$\frac{x^2}{36}-\frac{y^2}{35}=1$C.$\frac{x^2}{3}-\frac{y^2}{2}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.要排出某班一天中语文、数学、政治、英语、体育、艺术六堂课的课程表,要求数学排在上午(前4节),体育排在下午(后2节),不同排法总数是(  )
A.720B.120C.144D.192

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(Ⅰ)已知在△ABC中,AB=1,BC=2,∠B=$\frac{π}{3}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$求(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(4$\overrightarrow{a}$+$\overrightarrow{b}$);
(Ⅱ)已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,3),且向量t$\overrightarrow{a}$+$\overrightarrow{b}$与向量$\overrightarrow{a}$-$\overrightarrow{b}$平行,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图为一个简单组合体的三视图,其中正视图由 一个半圆和一个正方形组成,则该组合体的表面积为(  )
A.20+17πB.20+16πC.16+17πD.16+l6π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={-2,-1,0,1,2},B={x|lgx≤0},则A∩B=(  )
A.{1}B.{0,1}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知D=$\left\{{\left.{({x,y})}\right|\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≤0\\ 3x-y+6≥0\end{array}\right.}\right\}$,给出下列四个命题:
P1:?(x,y)∈D,x+y+1≥0;
P2:?(x,y)∈D,2x-y+2≤0;
P3:?(x,y)∈D,$\frac{y+1}{x-1}$≤-4;
P4:?(x,y)∈D,x2+y2≤2.
其中真命题的是(  )
A.P1,P2B.P2,P3C.P2,P4D.P3,P4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,点$A(1,\sqrt{3})$为椭圆$\frac{x^2}{2}+\frac{y^2}{n}=1$上一定点,过点A引两直线与椭圆分别交于B,C两点.
(1)求椭圆方程;
(2)若直线AB,AC与x轴围成以点A为顶点的等腰三角形,求△ABC的面积最大值,并求出此时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.sin(-1740°)的值是(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案