精英家教网 > 高中数学 > 题目详情
15.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为(  )
A.$\frac{x^2}{12}+\frac{y^2}{11}=1$B.$\frac{x^2}{36}-\frac{y^2}{35}=1$C.$\frac{x^2}{3}-\frac{y^2}{2}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

分析 利用椭圆的定义判断点P的轨迹 是以A、F 为焦点的椭圆,求出a、b的值,即得椭圆的方程.

解答 解:由题意得 圆心F(1,0),半径等于2$\sqrt{3}$,|PA|=|PB|,
∴|PF|+|PA|=|PF|+|PB|=|BF|=半径2$\sqrt{3}$>|AF|,
故点P的轨迹是以A、F 为焦点的椭圆,
2a=2$\sqrt{3}$,c=1,∴b=$\sqrt{2}$,∴椭圆的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1.
故选D.

点评 本题考查用定义法求点的轨迹方程,结合椭圆的定义求轨迹是解题的难点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数y=0.3${\;}^{2-x-{x}^{2}}$的定义域为R;单调递增区间[-$\frac{1}{2}$,+∞);值域[$0.{3}^{\frac{9}{4}}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果正数a,b满足a+b=5,则$\frac{1}{a+1}+\frac{1}{b+2}$的最小值为(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}a{x^2}+2{a^2}x+b,a,b∈R$.
(1)若曲线y=f(x)在点P(0,f(0))处的切线与曲线y=f(x)的公共点的横坐标之和为3,求a的值;
(2)当$0<a≤\frac{1}{2}$时,对任意c,d∈[-1,2],使f(c)-b+f'(d)≥M+8a恒成立,求实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若关于x,y的二元一次方程组$\left\{\begin{array}{l}ax+y=a+1\\ x+ay=2a\end{array}\right.$无解,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法中正确的是(  )
A.“a>b”是“log2a>log2b”的充要条件
B.若函数y=sin2x的图象向左平移$\frac{π}{4}$个单位得到的函数图象关于y轴对称
C.命题“在△ABC中,$A>\frac{π}{3}$,则$sinA>\frac{{\sqrt{3}}}{2}$”的逆否命题为真命题
D.若数列{an}的前n项和为${S_n}={2^n}$,则数列{an}是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=2|x|,记a=f(log0.53),b=log25,c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为实数,f(x)=(x2-4)(x-a),
(1)求导数f'(x);
(2)若x=-1是函数f(x)的极值点,求f(x)在[-2,2]上的最大值和最小值;
(3)若f(x)在(-∞,-2]和[2,+∞)上都是递增的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.集合P={y|y=-x2+2},Q={x|y=-x+2}则P∩Q是(  )
A.(0,2),(1,1)B.{(0,2),(1,1)}C.D.{y|y≤2}

查看答案和解析>>

同步练习册答案