精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+bln(x+1).
(I)若对定义域内的任意x,都有f(x)≥f(1)成立,求实数b的值;
(II)若函数f(x)的定义域上是单调函数,求实数b的取值范围;
(III)若b=-1,证明对任意的正整数n,不等式
n


k=i
f(
1
k
)<1+
1
23
+
1
33
+…+
1
n3
成立.
(Ⅰ)由x+1>0,得x>-1.
∴f(x)的定义域为(-1,+∞).…(1分)
因为对x∈(-1,+∞),都有f(x)≥f(1),
∴f(1)是函数f(x)的最小值,故有f′(1)=0.…(2分)
f(x)=2x+
b
x+1

∴2+
b
2
=0,解得b=-4.      …(3分)
经检验,b=-4时,f(x)在(-1,1)上单调减,在(1,+∞)上单调增.
f(1)为最小值.故得证. …(4分)
(Ⅱ)∵f(x)=2x+
b
x+1
=
2x2+2x+b
x+1

又函数f(x)在定义域上是单调函数,
∴f′(x)≥0或f′(x)≤0在(_1,+∞)上恒成立.…(6分)
若f′(x)≥0,则2x+
b
x+1
≥0在(-1,+∞)上恒成立,
即b≥-2x2-2x=-2(x+
1
2
2+
1
2
恒成立,由此得b
1
2
;…(8分)
若f′(x)≤0,则2x+
b
x+1
≤0在(-1,+∞)上恒成立,
即b≤-2x2-2x=-2(x+
1
2
2+
1
2
恒成立.
-2(x+
1
2
)2+
1
2
在(-1,+∞)上没有最小值,
∴不存在实数b使f′(x)≤0恒成立.
综上所述,实数b的取值范围是[
1
2
,+∞
).…(10分)
(Ⅲ)当b=1时,函数f(x)=x2-ln(x+1).
令h(x)=f(x)-x3=-x3+x2-ln(x+1),
h(x)=-3x2+2x-
1
x+1
=-
3x3+(x-1)2
x+1

当x∈(0,+∞)时,h′(x)<0,
所以函数h(x)在(0,+∞)上单调递减.
又h(0)=0,∴当x∈[0,+∞)时,恒有h(x)<h(0)=0,
即x2-ln(x+1)<x3恒成立.
故当x∈(0,+∞)时,有f(x)<x3.…(12分)
∵k∈N*,∴
1
k
∈(0,+∞)

x=
1
k
,则有f(
1
k
) <
1
k3

n


k=1
f(
1
k
) <1+
1
23
+
1
3 3
+…+
1
n3

所以结论成立. …(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案