精英家教网 > 高中数学 > 题目详情
某人为估算图中图中不规则图形的面积,将其放置在边长为2的正方形内,然后借助计算机随机向正方形内抛掷1000个点,得知落在不规则图形内的点共有250个,则图中不规则图形的面积约为
 
考点:几何概型
专题:概率与统计
分析:先利用古典概型的概率公式求概率,再求不规则图形M的面积的估计值.
解答: 解:由题意,设不规则图形的面积为S,
∵借助计算机随机向正方形内抛掷1000个点,得知落在不规则图形内的点共有250个,
∴概率P=
250
1000
=
1
4

∵边长为2的正方形ABCD的面积为4,
S
4
=
1
4

∴S=1,
∴不规则图形M的面积的估计值为1.
故答案为:1.
点评:利用几何概型的意义进行模拟试验,估算不规则图形面积的大小,关键是要根据几何概型的计算公式,探究不规则图形面积与已知的规则图形的面积之间的关系,及它们与模拟试验产生的概率(或频数)之间的关系,并由此列出方程,解方程即可得到答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

偶函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=1-x,则关于x的方程f(x)=log9(x+1)解的个数是
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)在(-1,1)上有定义,f(
1
2
)=1
,且满足x,y∈(-1,1)时有f(x)-f(y)=f(
x-y
1-xy
)
,数列{xn}满足x1=
1
2
xn+1=
2xn
1+xn2

(1)求f(0)的值,并证明f(x)在(-1,1)上为奇函数;
(2)探索f(xn+1)与f(xn)的关系式,并求f(xn)的表达式;
(3)是否存在自然数m,使得对于任意的n∈N*,
1
f(x1)
+
1
f(x2)
+…+
1
f(xn)
m-8
4
恒成立?若存在,求出m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2mx+4n2(m∈R,n∈R).
(Ⅰ)若m从集合{0,1,2,3}中任取一个元素,n从集合{0,1,2,4}中任取一个元素,求方程f(x)=0有两个不相等实数根的概率;
(Ⅱ)若m从区间[0,4]中任取一个数,n从区间[0,6]中任取一个数,求方程f(x)=0没有实数根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设有关于x的一元二次方程x2+2ax+b2=0
(1)若a是从0,1,2,3四个数中任意取一个数,b是从0,1,2三个数中任意取一个,求上述方程有实根的概率;
(2)若a∈[0,2],b∈[0,1],求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x-
2
x+1
≥1
的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线y=
x
围成的区域内(阴影部分)的概率为(  )
A、
1
2
B、
2
3
C、
3
4
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg
x2+1
|x|
(x≠0,x∈R)有如下命题:
(1)函数y=f(x)图象关于y轴对称.
(2)当x>0时,f(x)是增函数,x<0时,f(x)是减函数.
(3)函数f(x)的最小值是lg2.
(4)f(x)无最大值,也无最小值.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图茎叶图记录了甲、乙两组各四名同学的植树的棵数.
(Ⅰ)从甲、乙两组中各随机取一名学生,求这两名学生植树总棵数为19的概率;
(Ⅱ)甲组中有两名同学约定在早上7点到8点之间到达车站一同去植树,且在车站彼此等候40分钟,超过40分钟,则各自到植树地点再会面.求他们在车站会面的概率.

查看答案和解析>>

同步练习册答案