分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求出最优解即可求最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,![]()
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{1}{2}}\end{array}\right.$,即B($\frac{3}{2}$,$\frac{1}{2}$),
代入目标函数z=2x+y得z=2×$\frac{3}{2}$+$\frac{1}{2}$=$\frac{7}{2}$.
即目标函数z=2x+y的最大值为$\frac{7}{2}$.
故答案为:$\frac{7}{2}$
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | [1,+∞) | C. | (-∞,1) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 至多抽到2件次品 | B. | 至多抽到2件正品 | C. | 至少抽到2件正品 | D. | 至多抽到1件次品 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com