精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,O为坐标原点,已知A(3,1),B(-1,3),若点C满足|
AC
+
BC
|=|
AC
-
BC
|,则C点的轨迹方程是(  )
A、x+2y-5=0
B、2x-y=0
C、(x-1)2+(y-2)2=5
D、3x-2y-11=0
分析:由题设条件知C点的轨迹是以两个端点A、B为直径的圆,圆心坐标为线段AB的中点(1,2),半径等于
5
,由此可知C点的轨迹方程是(x-1)2+(y-2)2=5.
解答:解:由|
AC
+
BC
|=|
AC
-
BC
|,知
AC
BC

所以C点的轨迹是以两个端点A、B为直径的圆,
圆心坐标为线段AB的中点(1,2),半径等于
5

所以C点的轨迹方程是(x-1)2+(y-2)2=5.
故选C.
点评:本题考查圆的基本知识,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案