精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=sin2(ωx+$\frac{π}{12}$)-$\frac{\sqrt{3}}{2}$sin(2ωx+$\frac{π}{6}$)的相邻两条对称轴之间的距离为$\frac{π}{2}$.求:
(1)ω;
(2)函数f(x)在区间[-$\frac{π}{2}$,-$\frac{π}{12}$]上的最大值.

分析 (1)利用三角恒等变换化简函数f(x)的解析式,再利用正弦函数的周期性,求得ω的值.
(2)由条件利用正弦函数的定义域和值域,求得函数f(x)在区间[-$\frac{π}{2}$,-$\frac{π}{12}$]上的最大值.

解答 解:(1)根据函数f(x)=sin2(ωx+$\frac{π}{12}$)-$\frac{\sqrt{3}}{2}$sin(2ωx+$\frac{π}{6}$)=$\frac{1-cos(2ωx+\frac{π}{6})}{2}$-$\frac{\sqrt{3}}{2}$sin(2ωx+$\frac{π}{6}$)=$\frac{1}{2}$-sin(2ωx+$\frac{π}{6}$+$\frac{π}{6}$)
=$\frac{1}{2}$-sin(2ωx+$\frac{π}{3}$)的相邻两条对称轴之间的距离为$\frac{π}{2}$,
可得 $\frac{T}{2}$=$\frac{1}{2}$•$\frac{2π}{2ω}$=$\frac{π}{2}$,求得ω=1.
(2)在区间[-$\frac{π}{2}$,-$\frac{π}{12}$]上,2x+$\frac{π}{3}$∈[-$\frac{2π}{3}$,$\frac{π}{6}$],故当2x+$\frac{π}{3}$=-$\frac{π}{2}$时,函数f(x)取得最大值为$\frac{1}{2}$+1=$\frac{3}{2}$.

点评 本题主要考查三角恒等变换,正弦函数的周期性,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知{an}为等差数列,且a1+a3+a5=105,a2+a4+a6=99,当a1+a2+…+an取最大值时,则n的值为(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数y=f(x)=$\frac{1}{3}$x3-x2+ax+a有三个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求焦点是椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的前n项和为Sn,且S4=16,a4=7.
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$$<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列不等式:
(1)2|3-x|-8>0;
(2)3|2x+3|≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)解$\root{3}{x+4}$+$\root{3}{3x-7}$+4x-3>0;
(2)解方程$\root{3}{x+2}$+$\root{3}{2x+5}$+3x+5=0;
(3)设m=$\frac{(1+\sqrt{2001})^{2002}-(1-\sqrt{2001})^{2002}}{\sqrt{2001}}$,判断m是无理数还是有理数?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知集合A={0,1},B={(x,y)|x∈A,y∈A},则集合B的真子集的个数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=$\left\{{\begin{array}{l}1&{x>0}\\ 0&{x=0}\\{-1}&{x<0}\end{array}}$,g(x)=x2•f(x-1),则函数g(x)的递减区间是(  )
A.[0,+∞)B.[0,1)C.(-∞,1)D.(-1,1)

查看答案和解析>>

同步练习册答案