分析 根据题意,由函数的奇偶性分析可得函数f(x)在区间(0,+∞)上为增函数,进而可以将不等式$f({log_{\frac{1}{2}}}x)>0$转化为|$lo{g}_{\frac{1}{2}}x$|>1,解可得x的取值范围.
解答 解:根据题意,定义在R上的偶函数f(x)在(-∞,0)上是减函数,
则函数f(x)在区间(0,+∞)上为增函数,
若$f({log_{\frac{1}{2}}}x)>0$,则|$lo{g}_{\frac{1}{2}}x$|>1,
即|log2x|>log22,
解可得0<x<$\frac{1}{2}$或x>2,
即不等式$f({log_{\frac{1}{2}}}x)>0$的解集为$\{x|0<x<\frac{1}{2}$或x>2};
故答案为:$\{x|0<x<\frac{1}{2}$或x>2}.
点评 本题考查函数的奇偶性与单调性综合应用,注意对数函数定义域.
科目:高中数学 来源:2016-2017学年重庆市高一上学期第一次月考数学试卷(解析版) 题型:选择题
下调查方式中,不合适的是( )
A.浙江卫视“奔跑吧兄弟”综艺节目的收视率,采用抽查的方式
B.了解某渔场中青鱼的平均重量,采用抽查的方式
C.了解iphone6s手机的使用寿命,采用普查的方式
D.了解一批汽车的刹车性能,采用普查的方式
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | -2 | C. | 2 | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin({\frac{x}{2}+\frac{π}{6}})$ | B. | $y=cos({2x+\frac{π}{3}})$ | C. | $y=sin({2x-\frac{π}{6}})$ | D. | $y=cos({2x-\frac{π}{6}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com