精英家教网 > 高中数学 > 题目详情

如图,在正方体ABCD-A1B1C1D1中,点M,N分别为棱A1A和B1B的中点,求CM和D1N所成角的余弦值.

解:以D为原点,分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系
则C(0,2,0),D1(0,0,2),M(2,0,1),N(2,2,1)
=(2,-2,1),=(2,2,-1),

分析:先建立空间直角坐标系,再分别求相关点的坐标,再求相关向量的坐标,最后用向量的夹角求解.
点评:本题主要考查用向量法求解异面直线所成的角.一定要注意异面直线所成角的范围与向量的夹角范围不同.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案