精英家教网 > 高中数学 > 题目详情
6.在一个2×2列联表中,由其数据计算得K2的观测值k=7.097,则这两个变量间有关系的可能性为(  )
A.99%B.99.5%C.99.9%D.无关系

分析 根据所给的观测值,把观测值同临界值表中的临界值进行比较,看出所求的结果比哪一个临界值大,得到可信度.

解答 解:

P(x2≥0)0.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
∵由一个2×2列联表中的数据计算得K2
观测值k=7.097,
则7.097>6.635,
∴有99%的把握说这两个变量有关系,
故选A.

点评 本题考查独立性检验,考查判断两个变量之间有没有关系,一般题目需要自己做出观测值,再拿着观测值同临界值进行比较,得到结论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在多面体EF-ABCD中,ABCD,ABEF均为直角梯形,$∠ABE=∠ABC=\frac{π}{2}$,DCEF为平行四边形,平面DCEF⊥平面ABCD.
(Ⅰ)求证:DF⊥平面ABCD;
(Ⅱ)若△ABD是等边三角形,且BF与平面DCEF所成角的正切值为$\frac{{\sqrt{2}}}{2}$,求二面角A-BF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟,在调查某高中学校高三学生自主招生报考的情况,得到如下结果(  )
①报考“北约”联盟的考生,都没报考“华约”联盟
②报考“华约”联盟的考生,也报考了“京派”联盟
③报考“卓越”联盟的考生,都没报考“京派”联盟
④不报考“卓越”联盟的考生,就报考“华约”联盟
根据上述调查结果,下述结论错误的是(  )
A.没有同时报考“华约”和“卓越”联盟的考生
B.报考“华约”和“京派”联盟的考生一样多
C.报考“北约”联盟的考生也报考了“卓越”联盟
D.报考“京派”联盟的考生也报考了“北约”联盟

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知某几何体的三视图如图所示,该几何体的体积为(  )
A.$\frac{2}{3}$B.$\frac{5}{6}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.2015年下半年,“豆芽花”发卡突然在全国流行起来,各地随处可见头上遍插“小草”的人群,其形象如图1所示:

对这种头上长“草”的呆萌造型,大家褒贬不一.为了了解人们是否喜欢这种造型,随机从人群中选取50人进行调查,每位被调查者都需要按照百分制对这种造型进行打分.按规定,如果被调查者的打分超过60分,那么被调查者属于喜欢这种造型的人;否则,属于不喜欢这种造型的人.将收集的分数分成[0,20],(20,40],(40,60],(60,80],(80,100]五组,并作出如下频率分布直方图(如图2):
(Ⅰ)为了了解被调查者喜欢这种造型是否与喜欢动画片有关,根据50位被调查者的情况制作的2×2列联表如下表,请在表格空白处填写正确数字,并说明是否有95%以上的把握认为被调查者喜欢头上长“草”的造型与自身喜欢动画片有关?
喜欢头上长“草”的造型不喜欢头上长“草”的造型合计
喜欢动画片30
不喜欢动画片6
合计
(Ⅱ)将上述调查所得到的频率视为总体概率.现采用随机抽样方法抽取3人,记被抽取的3人中喜欢头上长“草”的造型的人数为X.若每次抽取的结果是相互独立的,求X的分布列、期望E(X)和方差D(X).
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx+m(x-1)2,(m∈R)
(Ⅰ)讨论函数f(x)极值点的个数;
(Ⅱ)若对任意的x∈[1,+∞),f(x)≥0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,多面ABCDEF中,DE⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,四边形BDEF是正方形.
(1)求证:AE∥平面BCF;
(2)求直线AF与平面ABD所成角的正弦值;
(3)在线段EC上是否存在点P,使得AP⊥平面CEF,若存在,求出$\frac{PC}{EP}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,AB为圆O的切线,A为切点,C为线段AB的中点,过C作圆O的割线CED(E在C,D之间),求证:∠CBE=∠BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若不等式$\frac{{x}^{2}-8x+20}{m{x}^{2}-mx-1}$<0对一切x∈R都成立,则实数m的取值范围是(-4,0].

查看答案和解析>>

同步练习册答案