精英家教网 > 高中数学 > 题目详情
在四面体ABCD中,已知棱AC的长为,其余各棱的长都为1,则二面角A-CD-B的余弦值是( )
A.
B.
C.
D.
【答案】分析:先作出二面角A-CD-B的平面角,再利用余弦定理求解即可.
解答:解:由已知可得AD⊥DC
又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD
在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A-CD-B的平面角
∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)
∴cos∠BEF==
故选C.
点评:本题考查二面角的平面角,考查余弦定理,正确作出二面角的平面角是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为(  )
A、
1
3
B、
1
2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在四面体ABCD中,M、N分别是面△ACD、△BCD的重心,则四面体的四个面中与MN平行的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到四面体ABCD(如图2),则在四面体ABCD中,AD与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,截面EFGH平行于对棱AB和CD,且FG⊥GH,试问截面在什么位置时其截面面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外接球的半径为
3
3

查看答案和解析>>

同步练习册答案