分析 由已知及正弦定理可得cosB=$\frac{a}{2c}$,结合余弦定理可得$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{a}{2c}$,整理可得b=c,即可得解.
解答 解:∵sinA=2sinCcosB,
∴由正弦定理可得:a=2ccosB,可得:cosB=$\frac{a}{2c}$,
又∵由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
∴$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{a}{2c}$,整理可得:c2=b2,即b=c,
∴△ABC为等腰三角形.
故答案为:等腰.
点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{60}$ | B. | $\frac{1}{12}$ | C. | $\frac{3}{5}$ | D. | $\frac{59}{60}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${x^2}+\frac{y^2}{6}=1$ | B. | ${x^2}+\frac{y^2}{3}=1$ | C. | ${x^2}+\frac{y^2}{4}=1$ | D. | ${x^2}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com