精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=sinx+cosx,x∈(0,π),且f′(x)=0,则x=(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 求出原函数的导函数,由f′(x)=0结合x得范围得答案.

解答 解:∵f(x)=sinx+cosx,∴f′(x)=cosx-sinx,
由f′(x)=0,得cosx-sinx=-$\sqrt{2}$sin(x$-\frac{π}{4}$)=0,
∵x∈(0,π),∴$-\frac{π}{4}<x-\frac{π}{4}<\frac{3π}{4}$,则x-$\frac{π}{4}=0$,∴x=$\frac{π}{4}$.
故选:A.

点评 本题考查导数的运算,考查了三角函数的化简求值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知复数z=log3(x2-3x)+ilog2(x-4),当x为何值时,
(1)z∈R;
(2)z为虚数;
(3)z所对应的复平面上的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设正方形ABCD的边长为1,则|$\overrightarrow{AB}$-$\overrightarrow{BC}$+$\overrightarrow{AC}$|等于(  )
A.0B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ex-ax+1,其中a为实常数,e=2.71828…为自然对数的底数.
(1)当a=e时,求函数f(x)的单调区间;
(2)若函数f(x)有最小值,并设函数f(x)的最小值为g(a),求证:g(a)≤2;
(3)设n∈N*,试比较$\frac{n(n+1)}{2}$与ln(e-1)+ln(2e-1)+ln(3e-1)…+ln(ne-1)的大小并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若△ABC的三内角∠A,∠B,∠C满足 sin A=2sinCcos B,则△ABC为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知正项等比数列{an}前n项和为Sn,且满足S3=$\frac{7}{2}$,a6,3a5,a7成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列bn=$\frac{1}{(2lo{g}_{2}{a}_{n+1}+3)^{2}-1}$,且数列bn的前n项的和Tn,试比较Tn与$\frac{1}{4}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若抛物线$y=\frac{1}{8}{x^2}$的焦点F与双曲线x2-y2=a的一个焦点重合,则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.二项式($\frac{\sqrt{x}}{2}$-$\frac{2}{x}$)10的展开式中$\sqrt{x}$的系数是(  )
A.-$\frac{15}{2}$B.$\frac{15}{2}$C.-$\frac{35}{8}$D.$\frac{35}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z=(a2-2a-3)+(a2-1)i,(a∈R,i为虚数单位)是纯虚数,则实数a的值为(  )
A.3B.-3C.-1或3D.1或-3

查看答案和解析>>

同步练习册答案