精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD是正方形,侧棱PA⊥底面ABCD,且PA=AB,E为PD 的中点,O为AC与BD的交点;
①求证:PB∥平面EAC;
②求异面直线BC与PD所成角的大小.
分析:①利用线面平行的判定定理证明.
②利用异面直线所成角的定义求夹角.
解答:解;①证明:连接OE
∵底面ABCD为正方形
∴BO=DO
∴O为BD的中点,E为PD的中点
在△PDB中,OE为中位线,
因为PB∥OE,
OE?面EAC,PB?面EAC,
所以PB∥平面EAC.
②因为AD∥BC,所以AD与PD所成的角即为异面直线BC与PD所成角.
因为PA⊥面ABCD,所以PA⊥AD,
又PA=AB=AD,
所以三角形PDA为等腰直角三角形,
所以∠PDA=45°,即异面直线BC与PD所成角的大小为45°.
点评:本题主要考查直线和平面平行的判定依据空间异面直线所成的角,要求熟练掌握相关的定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案