精英家教网 > 高中数学 > 题目详情
20.计算:12×|3+4i|-10×(i2011+i2012+i2013+i2014)=60.(其中i为虚数单位)

分析 i4=1,可得i2011+i2012+i2013+i2014=i3+i4+i+i2,再利用复数模的计算公式即可得出.

解答 解:∵i4=1,
∴i2011+i2012+i2013+i2014=i3+i4+i+i2=-i+1+i-1=0,
∴原式=12×$\sqrt{{3}^{2}+{4}^{2}}$-0
=60.
故答案为:60.

点评 本题考查了复数的周期性、复数模的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知某工厂生产的一种零件内径尺寸服从正态分布N(22.5,0.12),则该零件尺寸大于22.5的概率为(  )
A.0.01B.0.1C.0.5D.0.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知命题p:复数$\frac{a+i}{1+i}$(a∈R,i为虚数单位)在复平面上对应的点在第二象限,命题q:曲线y=x2+(2a-3)•x+1与x轴没有交点.若“p∨q”为真,则实数a的取值范围为(  )
A.(-∞,$\frac{1}{2}$)∪($\frac{5}{2}$,+∞)B.(-∞,-1)∪($\frac{1}{2}$,$\frac{5}{2}$)C.(-∞,-1)∪[$\frac{1}{2}$,$\frac{5}{2}$]D.(-∞,$\frac{1}{2}$]∪[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=($\frac{1}{2}$)x-1+m的图象不经过第一象限,则m的取值范围是(  )
A.m≥-1B.m≥-2C.m≤-1D.m≤-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:-1+m<x<1+m,命题q:$\frac{1}{3}$<x<$\frac{1}{2}$,q是p成立的充分不必要条件,则m的取值范围是(  )
A.{m|-$\frac{4}{3}$≤m≤$\frac{1}{2}$}B.{m|m<$\frac{1}{2}$}C.{m|-$\frac{1}{2}$≤m≤$\frac{4}{3}$}D.{m|m≥$\frac{4}{3}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知一次函数y=kx+k+2,则无论k取何值时,它的图象一定经过的定点是(  )
A.(0,2)B.(-1,2)C.(1,2)D.(-1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知递增等差数列{an}前三项的和为-3,前三项的积为8.求等差数列{an}的通项公式和前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在函数$y=\left\{\begin{array}{l}x+2,x≤-1\\{x^2},-1<x<2\\ 2x,x≥2\end{array}\right.$中,则f(1)值是(  )
A.3B.1C.2D.±1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.以平面直角坐标系的原点为极点,x轴正半轴为极轴建立坐标系,两种坐标系中取相同的长度单位,设点A的坐标为(2,$\frac{π}{6}$),直线l过点A且与极轴成角为$\frac{π}{6}$.圆C的极坐标方程为ρ=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(1)写出直线l的直线方程,并把圆C的方程化成直角坐标方程;
(2)设直线l与曲线圆C交于B,C两点,求|AB|•|AC|的值.

查看答案和解析>>

同步练习册答案