精英家教网 > 高中数学 > 题目详情
设函数f(x)=
sin x
x

(1)判断f(x)在区间(0,π)上的增减性并证明之.
(2)若不等式0≤a≤
x-3
+
4-x
对一切x∈[3,4]恒成立.
①求实数a的取值范围;
②设0≤x≤π,求证:(2a-1)sin x+(1-a)sin(1-a)x≥0.
分析:(1)求导函数f′(x)=
xcosx-sinx
x2
,x∈(0,π),设g(x)=xcos x-sin x,x∈(0,π),求导数,可得g(x)在(0,π)上为减函数,从而x∈(0,π)时,g(x)<0,进而可得f(x)在(0,π)上是减函数;
(2)①先求得(
x-3
+
4-x
min=1,根据0≤a≤
x-3
+
4-x
对一切x∈[3,4]恒成立,即可求实数a的取值范围;
②显然当a=0,1或x=0,π时,不等式成立.当0<a<1且0<x<π,原不等式等价于(1-a)sin(1-a)x≥(1-2a)sin x.先证明一个更强的不等式:(1-a)sin(1-a)x≥(1-2a+a2)sin x=(1-a)2sin x,再根据(1-2a+a2)sin x>(1-2a)sin x,即可得到结论.
解答:(1)解:∵f(x)=
sinx
x
,∴f′(x)=
xcosx-sinx
x2
,x∈(0,π).
设g(x)=xcos x-sin x,x∈(0,π),则g′(x)=-xsin x<0(∵x∈(0,π)).
∴g(x)在(0,π)上为减函数,又∵g(0)=0,
∴x∈(0,π)时,g(x)<0,
∴f′(x)=
g(x)
x2
<0,
∴f(x)在(0,π)上是减函数.(6分)
(2)①解:∵(
x-3
+
4-x
2=1+2
(x-3)(4-x)

∴x=3或4时,(
x-3
+
4-x
2min=1,
∴(
x-3
+
4-x
min=1.
又0≤a≤
x-3
+
4-x
对一切x∈[3,4]恒成立,
∴0≤a≤1.
②证明:显然当a=0,1或x=0,π时,不等式成立.
当0<a<1且0<x<π,原不等式等价于(1-a)sin(1-a)x≥(1-2a)sin x.(10分)
下面证明一个更强的不等式:(1-a)sin(1-a)x≥(1-2a+a2)sin x=(1-a)2sin x ①
即sin(1-a)x≥(1-a)sin x. ②
亦即
sin(1-a)x
(1-a)x
sinx
x

由(1)知
sinx
x
在(0,π)上是减函数,又∵(1-a)x<x,∴
sin(1-a)x
(1-a)x
sinx
x
.(12分)
∴不等式②成立,从而①成立.
又∵(1-2a+a2)sin x>(1-2a)sin x,∴(1-a)sin(1-a)x>(1-2a)sin x.
综上,∴0≤x≤π且0≤a≤1时,原不等式成立.(14分)
点评:本题考查导数知识的而运用,考查函数的单调性,考查不等式的证明,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2π+?)(-π<?<0),y=f(x)图象的一条对称轴是直线x=
π8

(Ⅰ)求?;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x-2y+c=0与函数y=f(x)的图象不相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=
π8

(1)求φ;
(2)怎样由函数y=sin x的图象变换得到函数f(x)的图象,试叙述这一过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f (x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g (x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

同步练习册答案