精英家教网 > 高中数学 > 题目详情

函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,请说明理由.

(1).(2)满足条件的值只有一组,且

解析试题分析:本题利用导数研究函数的最值与单调性等基础知识,是高考常考的题型,对于(1),根据极值定义解方程即可,但注意检验极大值与极小值取得条件;对于(2),由得出:然后再讨论两种情况,设利用导数方法研究函数的单调性,再结合方程、不等式解题.
(1)
由题意知,解得
时,
易知上为减函数,在上为增函数,符合题意;
时,
易知上为增函数,在上为减函数,不符合题意.
所以,满足条件的
(2)因为,所以
①若,则,因为,所以.  
,则
所以上为增函数.
由于,即方程有唯一解为.② 若,则,即
(Ⅰ)时,
由①可知不存在满足条件的
时,,两式相除得


递增,在递减,由
此时,矛盾.
综上所述,满足条件的值只有一组,且
考点:利用导数研究函数的单调性、极值和最值问题,结合方程,不等式等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数满足:①在时有极值;②图像过点,且在该点处的切线与直线平行.
(1)求的解析式;
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处都取得极值.
(1)求的值;
(2)设函数,若对任意的,总存在,使得:,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求的单调区间和极值;
(2)若关于的方程有3个不同实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数的图象在点处的切线的倾斜角为,求上的最小值;
(2)若存在,使,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)的图像与轴交于点,曲线在点处的切线斜率为.
(1)求的值及函数的极值;
(2)证明:当时,
(3)证明:对任意给定的正数,总存在,使得当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
证明:(1)存在唯一,使
(2)存在唯一,使,且对(1)中的.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(ax+1)ex.
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在区间[-2,0]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求在区间上的最大值;
(2)若过点存在3条直线与曲线相切,求t的取值范围;
(3)问过点分别存在几条直线与曲线相切?(只需写出结论)

查看答案和解析>>

同步练习册答案