精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n(n+2),数列{bn}的前n项和为Tn,且有
Tn+1-bn+1
Tn+bn
=1,b1=3

(1)求数列{an},{bn}的通项an,bn
(2)设cn=
an
bn
,试判断数列{cn}的单调性,并证明你的结论.
(3)在(2)的前提下,设Mn是数列{cn}的前n项和,证明:Mn≥4-
n+2
2n-1
(1)∵Sn=n(n+2),
∴当n≥2时,an=Sn-Sn-1=2n+1
当n=1时,a1=S1=3满足上式
∴an=2n+1
Tn+1-bn+1
Tn+bn
=1

∴Tn+1-Tn=2bn-1
∴bn+1=2bn-1
∴bn+1-1=2(bn-1)
∴{bn-1}是公比为2的等比数列
bn-1=(b1-1)•2n-1=2n
bn =2n+1
(2)cn=
an
bn
=
2n+1
2n+1
,数列{cn}为递减数列
证明:∵cn+1-cn=
2n+3
2n+1+1
-
2n+1
2n+1

=
(1-2n)•2n+2
(2n+1+1)(2n+1)
<0

∴数列{cn}为递减数列
(3)证明:∵cn=
an
bn
=
2n+1
2n+1
2n
2n
=
n
2n-1

∴Mn=c1+c2+…+cn1+
2
2
+
3
22
+…+
n
2n-1

rn=1+
2
2
+
3
22
+…+
n
2n-1

1
2
r
n
=
1
2
+
2
22
+
3
23
+…+
n
2n

①-②:
1
2
r
n
=1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
-
n
2n
=2-
n+2
2n

rn=4-
n+2
2n-1

1+
2
2
+
3
22
+…+
n
2n-1
=4-
n+2
2n-1

Mn≥4-
n+2
2n-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案