精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱 中, ,底面三角形 是边长为2的等边三角形, 的中点.

(1)求证:
(2)若直线 与平面 所成的角为 ,求三棱柱 的体积.

【答案】
(1)解:连接 点,连接 .因为 分别为 的中点,所以 ,又 , 所以
(2)解:等边三角形 中, ,且 .则 在平面 的射影为 ,故 与平面 所成的角为 .在 中, ,算得
,所以, 的体积
【解析】(1)根据题意作出辅助线,利用中位线的直线得到线线平行,再由线面平行的判定定理即可得证结论。(2)利用等边三角形三线合一的性质得到线线垂直,结合线面垂直的判定定理得证C D ⊥ 平 面 A1ABB1 , 进而得到直线在平面内的射影,从而找到线面角,结合解三角形的知识代入数值到三棱柱的体积公式求出结果即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ ﹣3lnx(a∈R).
(1)若x=3是f(x)的一个极值点,求a值及f(x)的单调区间;
(2)当a=﹣2时,求f(x)在区间[1,e]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆 经过点 .
(1)求周长最小的圆的一般方程;
(2)求圆心在直线 上的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0 , 且x0>0,则a的取值范围为(
A.(﹣∞,﹣2)
B.(﹣∞,0)
C.(2,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,函数 .若函数 恰好有2个不同的零点,则实数 的取值范围是 ( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O是边长为 的正方形ABCD的中心,点E、F分别是AD、BC的中点,沿对角线AC把正方形ABCD折成直二面角D﹣AC﹣B; (Ⅰ)求∠EOF的大小;
(Ⅱ)求二面角E﹣OF﹣A的余弦值;
(Ⅲ)求点D到面EOF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:

分数段

频数

选择题得分24分以上(含24分)

[40,50)

5

2

[50,60)

10

4

[60,70)

15

12

[70,80)

10

6

[80,90)

5

4

[90,100)

5

5

(Ⅰ)若从分数在[70,80),[80,90)的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:

x

3

6

7

9

10

y

12

10

8

8

7

(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程 = x+
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式: = = = ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.

查看答案和解析>>

同步练习册答案