精英家教网 > 高中数学 > 题目详情
1.已知A={x|-1≤x<2},B={x|m-1<x≤2m+5},若A⊆B,求m的取值范围.

分析 根据集合A、B的包含关系,得到不等式组,解出即可.

解答 解:A={x|-1≤x<2},B={x|m-1<x≤2m+5},若A⊆B,
则$\left\{\begin{array}{l}{-1>m-1}\\{2≤2m+5}\end{array}\right.$,解得:-$\frac{3}{2}$≤m<0,
∴m的范围是:[-$\frac{3}{2}$,0).

点评 本题考查了集合的包含关系,考查解不等式组问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(文)试卷(解析版) 题型:选择题

”是函数“上单调递增”的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设数列{an}满足a1=2,am+n+am-n-m+n=$\frac{1}{2}$(a2m+a2n),其中m,n∈N,m≥n.
(1)证明:对一切n∈N,都有an+2=2an+1-an+2.
(2)证明:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2015}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若f(x)=3x-2,则f(x-1)=3x-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一元二次方程x2+bx-2c=0,(b,c∈R)有两实根,其中一根x1∈(-1,0),另一根x2∈(0,1),则$\frac{c+1}{b+2}$的取值范围是(  )
A.($\frac{1}{4}$,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{2}$)C.($\frac{1}{3}$,1)D.(-∞,$\frac{1}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一个袋子中装有大小形状完全相同的编号分别为1,2,3,4,5的5个红球与编号为1,2,3,4的4个白球,从中任意取出3个球.
(Ⅰ)求取出的3个球颜色相同且编号是三个连续整数的概率;
(Ⅱ)记X为取出的3个球中编号的最大值,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设向量$\overrightarrow{a}$=(-sinx,1),$\overrightarrow{b}$=(sinx-cosx,1),其中x∈R,函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(Ⅰ)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求tanx的值;
(Ⅱ)求f(x)的最小正周期;
(Ш)求f(x)的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.为了考察中学生的性别与是否喜欢数学课程之间的关系,在某校中学生中随机抽取了50名学生,得到如下列联表:
喜欢数学不喜欢数学合计
131023
72027
合计203050
你认为性别与是否喜欢数学课程之间有关系的把握有(  )
A.0B.95%C.99%D.100%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.电视传媒公司为了解某地区观众对某体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
非体育迷体育迷合计
1055
合计
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.050.01
k3.8416.635
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).

查看答案和解析>>

同步练习册答案