精英家教网 > 高中数学 > 题目详情
17.求下列各式的值:sin[arcsin(-$\frac{\sqrt{3}}{2}$)].

分析 由条件利用反正弦函数的定义和性质,求得所给式子的值.

解答 解:sin[arcsin(-$\frac{\sqrt{3}}{2}$)]=sin[-arcsin$\frac{\sqrt{3}}{2}$]=-sin[arcsin$\frac{\sqrt{3}}{2}$]=-$\frac{\sqrt{3}}{2}$.

点评 本题主要考查反正弦函数的定义和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\left\{\begin{array}{l}{x+1,x≥0}\\{x-1,x<0}\end{array}\right.$ 在R上是(  )
A.减函数B.增函数C.先减后增D.无单调性

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将圆的标准方程(x-1)2+(y+2)2=5化为极坐标方程为ρ=2cosθ+4sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知关于x的不等式$\sqrt{x}$>ax+$\frac{3}{2}$的解集为4<x<b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某班元旦联欢会举行抽奖活动,现有六张分别标有1,2,3,4,5,6六个数字的形状相同的卡片,其中标有偶数数字的卡片是有奖卡片,且奖品个数与卡片上所标数字相同,抽奖规则如下:每人每次抽取的两张卡片.
(1)若甲、乙两位同学抽奖相互独立,求甲、乙两位同学所得奖品个数都不少于4的概率;
(2)记甲同学所得奖品个数为随机变量X,求X分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解不等式:x>$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.说明下列极坐标方程表示什么曲线,并画圆.
(1)ρ=$\frac{π}{3}$;
(2)ρcosθ=2;
(3)ρ=3;
(4)ρ=6cosθ;
(5)ρ=10sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,角α的顶点是原点,始边与x轴正半轴重合,A为终边上不同于原点的一点,其中α∈($\frac{π}{6}$,$\frac{π}{2}$),将角α的终边按逆时针方向旋转$\frac{π}{3}$,此时点A旋转到了点B.
(1)若A($\sqrt{2}$,1),求B点的横坐标;
(2)分别过A、B作x轴的垂线,垂足依次为C、D,记△AOC的面积为S1,△BOD的面积为S2,若S1=2S2,求角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a,b,c都是正数,a+2b+3c=9,则$\frac{1}{4a}$+$\frac{1}{18b}$+$\frac{1}{108c}$的最小值为$\frac{1}{9}$.

查看答案和解析>>

同步练习册答案