精英家教网 > 高中数学 > 题目详情
8.将圆的标准方程(x-1)2+(y+2)2=5化为极坐标方程为ρ=2cosθ+4sinθ.

分析 (x-1)2+(y+2)2=5展开化为:x2+y2-2x+4y=0,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\\{{ρ}^{2}={x}^{2}+{y}^{2}}\end{array}\right.$即可得出极坐标方程.

解答 解:(x-1)2+(y+2)2=5展开化为:x2+y2-2x+4y=0,
因此极坐标方程为ρ2-2ρcosθ+4ρsinθ=0,化为ρ=2cosθ+4sinθ.
故答案为:ρ=2cosθ+4sinθ.

点评 本题考查了极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.方程$\frac{y-{y}_{1}}{x-{x}_{1}}$=k表示过点P1(x1,y1),斜率是k的直线方程
B.直线y=kx+b与y轴交点为B(0,b),其中截距b=$|\begin{array}{l}{OB}\\{\;}\end{array}|$
C.在x轴,y轴上的截距分别为a,b的直线方程为$\frac{x}{a}+\frac{y}{b}=1$
D.方程(x2-x1)(y-y1)=(y2-y1)(x-x1)表示过任意不同两点P1(x1,y1),P2(x2,y2)的直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设二次函数f(x)=-ax2+bx+c(a,b,c∈R且a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x);②当x∈(0,2)时,x≤f(x)≤$(\frac{x+1}{2})^{2}$;③f(x)在R上的最小值为0,求函数 f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的通项公式是an=2•3n-1+(-1)n(1n2-1n3)+(-1)nn1n3,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.${∫}_{0}^{2\sqrt{2}}$$\frac{2x}{\sqrt{1+{x}^{2}}}$dx=(  )
A.4B.6C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求极坐标方程1+ρ2sin2φ=0所表示的曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知12件标准件产品中,有8件A型,4件B型,若从这12件标准件中每次随机抽取1件,取回后不放回,抽到“A型标准件”就结束,且抽取次数不超过3次,用X表示抽取结束时抽到“B型标准件“的个数,则P(X≥2)=$\frac{1}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求下列各式的值:sin[arcsin(-$\frac{\sqrt{3}}{2}$)].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=${(\frac{1}{2})}^{{x}^{2}-2x}$的递减区间为[1,+∞),最大值为2.

查看答案和解析>>

同步练习册答案