精英家教网 > 高中数学 > 题目详情
已知f(x)=log
1
2
x
,当点M(x,y)在y=f(x)的图象上运动时,点N(x-2,ny)在函数y=gn(x)的图象上运动(n∈N*).
(1)求y=gn(x)的表达式;
(2)若方程g1(x)=g2(x-2+a)有实根,求实数a的取值范围;
(3)设Hn(x)=2gn(x),函数F(x)=H1(x)+g1(x)(0<a≤x≤b)的值域为[log2
52
b+2
,log2
42
a+2
]
,求实数a,b的值.
(1)由
y=f(x)
ny=gn(x-2)

gn(x-2)=nf(x)=nlog
1
2
x

所以gn(x)=nlog
1
2
(x+2)
,(x>-2).(4分)
(2)log
1
2
(x+2)=2log
1
2
(x+a)

x+2
=x+a
(x+2>0)(6分)
a=-x+
x+2
,令t=
x+2
>0

所以a=-t2+t+2≤
9
4

x=-
7
4
时,a=
9
4

即实数a的取值范围是(-∞,
9
4
]
(10分)
(3)因为Hn(x)=2nlog
1
2
(x+2)
=
1
(x+2)n

所以F(x)=
1
x+2
+log
1
2
(x+2)
.F(x)在(-2,+∞)上是减函数.(12分)
所以
F(a)=log2
42
a+2
F(b)=log2
52
b+2

1
a+2
+log
1
2
(a+2)=log2
42
a+2
1
b+2
+log
1
2
(b+2)=log2
52
b+2

所以
a=2
b=3
(16分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案