分析 分别求出关于p,q成立的m的范围,根据p且q为真命题,得到关于m的不等式组,解出即可.
解答 解:若p为真,即方程${x^2}-2x+\frac{1}{2}m=0$有解,
∴4-2m≥0,即m≤2…(3分)
若q为真,即$\frac{x^2}{m+3}+\frac{y^2}{4}=1$表示焦点在x轴上的椭圆,
∴m+3>4,即m>1…(6分)
因为p且q为真,所以p和q都为真,…(8分)
∴$\left\{\begin{array}{l}m≤2\\ m>1\end{array}\right.$,解得1<m≤2,
∴m∈(1,2].…(10分)
点评 本题考查了复合命题的判断,考查二次函数的性质以及椭圆的性质,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{3}}{3}$ | B. | -$\frac{\sqrt{2}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-2{a}_{n}}{2}$ | B. | $\frac{2{a}_{n}-3}{2}$ | C. | $\frac{3-{a}_{n}}{2}$ | D. | $\frac{{a}_{n}-3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{5}{3}$或$\frac{25}{16}$ | D. | $\frac{5}{3}$或$\frac{5}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com