精英家教网 > 高中数学 > 题目详情
某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?
考点:计数原理的应用
专题:计算题,排列组合
分析:首先排列3个商业广告,有A33种结果,再在三个商业广告形成的四个空中排列三个元素,注意最后一个位置一定要有广告共有C31A32种结果,根据乘法原理得到结果.
解答: 解:由题意知,这里是元素不相邻的问题,
首先排列3个商业广告,有A33=6种结果,
再在三个商业广告形成的四个空中排列三个元素,注意最后一个位置一定要有广告,
共有C31A32=18种结果,
根据分步计数原理知共有6×18=108种结果,
点评:本题考查分步计数原理,注意题目中对于元素要不同的限制条件,一是有不相邻,二是有一个位置不能是一种元素,并且还不能空着,注意这几种不同要求要同时满足.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-1,1),求g(x)=f(a+x)+f(a-x)的定义域(-
1
2
<a<
1
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
sin3(-α)cos(5π+α)tan(2π+α)
cos3(-α-2π)sin(-α-3π)tan3(α-4π)

(2)
1-2sin10°cos10°
sin170°-
1-sin2170°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别是角A、B、C的对边,A=60°,B<C,b、c是方程x2-2
3
x+m=0的两个实根,△ABC的面积为
3
2

(1)求m的值;
(2)求△ABC的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(x+y)=f(x)+f(y)-1,且f(4)=5.
(1)求f(2)的值;
(2)解不等式f(m-2)≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,4),向量
b
=(7,-24).
①求与
a
同向的单位向量
e
的坐标;
②求
a
b
方向上的投影..

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个二次函数y=f(x)的抛物线先向左平移2个单位长度,再向下平移2个单位长度,此时抛物线过点(-1,-1),对称轴为x=-2,且在x轴上截得的线段长为2
2
,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,扇形OAB的半径为2,圆心角为
π
3
,∠AOB的平分线 交弧AB于点C,P为弧AC上一点,PM⊥OA于M,PN⊥OB于N,若设∠POC=θ.
﹙Ⅰ﹚写出四边形OMPN的面积S关于θ的函数关系式及其定义域;
﹙Ⅱ﹚P点在何处时S最大?最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式是an=(-1)n+1(n2+1),则它的第10项是
 

查看答案和解析>>

同步练习册答案