精英家教网 > 高中数学 > 题目详情

已知等比数列{an}的前n项和Sn=t•2n-1+1,则实数t的值为


  1. A.
    -2
  2. B.
    0或-2
  3. C.
    2
  4. D.
    数学公式
A
分析:当n≥2,an=Sn-Sn-1=t•2n-2,再由 a1=S1=t+1,可得 t•=t+1,由此解得t的值.
解答:∵等比数列{an}的前n项和Sn=t•2n-1+1,故当n≥2,an=Sn-Sn-1=t•2n-1+1-t•2n-2-1=t•2n-2
再由 a1=S1=t+1,可得 t•=t+1,解得t=-2,
故选A.
点评:本题主要考查了利用递推公式求,n≥2,an=Sn-Sn-1,当n=1时,a1=S1求解数列的通项公式及等比数列的定义的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案