精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=|x+a|+|x-4|.
(Ⅰ)若a=1,解不等式:f(x)≤2|x-4|;
(Ⅱ)若f(x)≥3恒成立,求a的取值范围.

分析 (Ⅰ)若a=1,不等式:f(x)≤2|x-4|化为|x+1|<|x-4|,两边平方,可解不等式;
(Ⅱ)f(x)=|x+a|+|x-4|≥|a+4|.若f(x)≥3恒成立,则|a+4|≥3,即可求a的取值范围.

解答 解:(Ⅰ)当a=1时,f(x)=|x+1|+|x-4|则f(x)<2|x-4|,即|x+1|<|x-4|.
两边平方可得x2+2x+1<x2-8x+16,∴x<1.5
∴解集为{x|x<1.5};
(Ⅱ)f(x)=|x+a|+|x-4|≥|a+4|.
∵f(x)≥3恒成立,
∴|a+4|≥3,
∴a+4≤-3或a+4≥3,
∴a≤-7或a≥-1.

点评 本题考查绝对值不等式,考查三角不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图).已知图中从左到右第一、第六小组的频率分别为0.16、0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为236,则该校高三年级的男生总数为(  )
A.800B.960C.944D.888

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.过点A(3,2)作圆x2+y2+2x-4y-20=0的弦,其中弦长为整数的共有(  )
A.6条B.7条C.8条D.9条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.正四棱锥的底面积是24cm2,侧面等腰三角形的面积为18cm2,四棱锥侧棱的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为$2\sqrt{3}$,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:$\overrightarrow{OM}=\frac{3}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}$(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{{a{x^2}}}{lnx}$在x=e处的切线经过点(1,e).(e=2.71828…)
(Ⅰ)求函数f(x)在[${e^{\frac{1}{4}}}$,e]上的最值;
(Ⅱ)若方程g(x)=tf(x)-x在$[\frac{1}{e},1)∪(1,{e^2}]$上有两个零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}-{x^2}+a,\;\;\;\;\;\;x≤0\\|{\frac{1-x}{2(x+1)}}|,\;\;x>0.\end{array}$若函数g(x)=f(x)-x恰有两个零点,则实数a的取值范围是$(0,+∞)∪\{-\frac{1}{4}\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在△ABC中,已知CD=2DB,BA=5BE,AF=mAD,AG=tAC.
(1)若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AD}$;
(2)设$\frac{1}{3}$≤m≤$\frac{1}{2}$,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设f(x)=$\frac{x}{\sqrt{1+{x}^{2}}}$,求f[f(x)].

查看答案和解析>>

同步练习册答案