精英家教网 > 高中数学 > 题目详情

是否存在实数m,使,且x是第二象限的角,若存在,请求出实数m,若不存在,试说明理由.

答案:略
解析:

解:设存在mÎ R,使

x是第二象限角,则sinx0cosx0,∴m1

又∵

m=0,这时sinx=1cosx=0,不是第二象限角,故m不存在.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在[1,3]上恰有两个不同零点,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知双曲线
x2
a2
-
y2
b2
=1
的渐近线方程为y=±
3
3
x
,左焦点为F,过A(a,0),B(0,-b)的直线为l,原点到直线l的距离是
3
2

(1)求双曲线的方程;
(2)已知直线y=x+m交双曲线于不同的两点C,D,问是否存在实数m,使得以CD为直径的圆经过双曲线的左焦点F.若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(2)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调区间?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总有f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.
已知函数g(x)=x2与h(x)=a•2x-1是定义在[0,1]上的函数.
(1)试问函数g(x)是否G函数?并说明理由;
(2)若函数h(x)是G函数,求实数a的值;
(3)在(2)的条件下,是否存在实数m,使方程g(2x-1)+h(x)=m恰有两解?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案