精英家教网 > 高中数学 > 题目详情
19.已知奇函数f(x)在R上为增函数,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是(-2,$\frac{2}{3}$).

分析 利用奇偶性将不等式进行转化,再利用单调性去掉不等式中的符号“f”,转化具体不等式,借助一次函数的性质可得x的不等式组,解出可得答案.

解答 解:由题意,奇函数f(x)在R上为增函数,
所以f(mx-2)+f(x)<0可化为:f(mx-2)<-f(x)=f(-x),
由f(x)递增知:mx-2<-x,即mx+x-2<0,
则对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,
等价于对任意的m∈[-2,2],mx+x-2<0恒成立,
所以$\left\{\begin{array}{l}{-2x+x-2<0}\\{2x+x-2<0}\end{array}\right.$,解得-2<x<$\frac{2}{3}$,
即x的取值范围是(-2,$\frac{2}{3}$),
故答案为:(-2,$\frac{2}{3}$).

点评 本题考查恒成立问题,函数的奇偶性与单调性的综合应用,考查转化思想,以及学生灵活运用知识解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=1,an+1=$\frac{2n-1}{2n+1}$an(n∈N),则数列{an}的通项公式是${a}_{n}=\frac{1}{2n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{-k+lnx}{x}$,k∈R.
(1)求f(x)的极值;
(2)若?x1∈(0,+∞),?x2∈[1,2]使lnx1>x1x22-ax1x2成立,求a的取值范围;
(3)已知x1>0,x2>0,且x1+x2<e,求证:(x1-x2)${\;}^{{x}_{1}{x}_{2}}$>(x1x2)${\;}^{{x}_{1}+{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知tanθ=2,则$\frac{sinθ-2cosθ}{sinθ+cosθ}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={a2+2015|a∈N},B={b2+15|b∈N},则A∩B中的元素个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.解不等式:3×4x-2×6x>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过正四面体ABCD的高DH作一平面,与正四面体的三个侧面相交得到三条直线DX,DY,DZ,这三条直线与正四面体的底面所成角分别为$\alpha$,$\beta$,$\gamma$.求证:tan2α+tan2β+tan2γ=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在长方形ABCD中,AB=2,AD=1,E为DC的中点,现将△DAE沿AE折起,使平面DAE⊥平面ABCE,连接DB,DC,BE.
(1)求证:BE⊥平面ADE;
(2)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex,g(x)=x2-ax+1.
(Ⅰ)若函数y=f(x)+g(x)在区间[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ) 记h(x)=$\frac{f(x)}{g(x)}$,若$a∈[{0,\frac{1}{2}}]$,则当x∈[0,a+1]时,函数h(x)的图象是否总在不等式y>x所表示的平面区域内,请写出判断过程.

查看答案和解析>>

同步练习册答案