分析 构造函数f(x)=x3+sinx,则f(x)+f(2y)=0,根据f(x)的奇偶性与单调性可得x+2y=0,于是tan(x+2y+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$.
解答 解:令f(x)=x3+sinx,
则f(x)在(-$\frac{π}{4}$,$\frac{π}{4}$)上为增函数,且f(x)为奇函数.
∵y3+$\frac{1}{8}$sin2y=-$\frac{1}{8}$m,∴8y3+sin2y=-m,
即f(2y)=-m,
∴f(x)+f(2y)=0,
∴x+2y=0,
∴tan(x+2y+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查了函数单调性,奇偶性的判断与应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若a>b>0,则$\frac{1}{a}$<$\frac{1}{b}$”的逆命题是真命题 | |
| B. | 命题p:?x∈R,x2-x+1>0,则¬p:?x0∈R,x02-x0+1<0 | |
| C. | “a>1,b>1”是“ab>1”成立的充分条件 | |
| D. | 在某项测量中,测量结果x服从正态分布N(1,σ2)(σ>0),若x在(0,1)内取值的概率为0.4,则x在(0,2)内取值的概率为0.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com