分析 由题意画出图形,作出正三棱锥的高与斜高,求出侧面积与体积,结合侧面积与体积的比为4$\sqrt{3}$,求得h.
解答
解:如图,A-BCD为正三棱锥,过A作AO⊥底面BCD,垂足为O,则AO=h,
∵底面BCD是边长为3的正三角形,则$OG=\frac{1}{3}CG=\frac{1}{3}\sqrt{{3}^{2}-(\frac{3}{2})^{2}}=\frac{\sqrt{3}}{2}$,
∴AG=$\sqrt{G{O}^{2}+{h}^{2}}=\sqrt{\frac{3}{4}+{h}^{2}}$,
∴正三棱锥的侧面积S=$3×\frac{1}{2}×3×\sqrt{\frac{3}{4}+{h}^{2}}=\frac{9}{2}\sqrt{\frac{3}{4}+{h}^{2}}$,
${V}_{A-BCD}=\frac{1}{3}×\frac{1}{2}×3×\frac{3\sqrt{3}}{2}h=\frac{3\sqrt{3}}{4}h$,
由题意,得$\frac{\frac{9}{2}\sqrt{\frac{3}{4}+{h}^{2}}}{\frac{3\sqrt{3}}{4}h}=4\sqrt{3}$,解得h=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查棱锥的结构特征,考查空间想象能力和思维能力,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 是否近视 | 1~50 | 951~1000 | 合计 |
| 年级名次 | |||
| 近视 | 41 | 32 | 73 |
| 不近视 | 9 | 18 | 27 |
| 合计 | 50 | 50 | 100 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com