精英家教网 > 高中数学 > 题目详情
3.已知矩阵A=$|\begin{array}{l}{1}&{a}\\{3}&{b}\end{array}|$,且A$|\begin{array}{l}{19}\\{8}\end{array}|$=$|\begin{array}{l}{3}\\{1}\end{array}|$,求直线l1:x-y+1=0在矩阵A对应的变换下得到的直线l2的方程.

分析 根据矩阵的乘法,$[\begin{array}{l}{1}&{a}\\{3}&{b}\end{array}]$$[\begin{array}{l}{19}\\{8}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,列方程组即可求得a和b的值,求得矩阵A,P1(x1,y1),P(x,y),$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,根据矩阵的乘法,列方程求得有$\left\{\begin{array}{l}{{x}_{1}=7x-2y}\\{{y}_{1}=3x-y}\end{array}\right.$,代入x-y+1=0即可得求直线l2的方程.

解答 解:∵A$[\begin{array}{l}{19}\\{8}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,即$[\begin{array}{l}{1}&{a}\\{3}&{b}\end{array}]$$[\begin{array}{l}{19}\\{8}\end{array}]$=$[\begin{array}{l}{3}\\{1}\end{array}]$,
可得:$\left\{\begin{array}{l}{19+8a=3}\\{57+8b=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-2}\\{b=-7}\end{array}\right.$
A=$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$,
设直线l1上任一点P1(x1,y1)在矩阵A对应的变换下得到的直线l2上的对应点P(x,y),
由题意可得$[\begin{array}{l}{1}&{-2}\\{3}&{-7}\end{array}]$$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
所以$\left\{\begin{array}{l}{{x}_{1}-2{y}_{1}=x}\\{3{x}_{2}-7{y}_{1}=y}\end{array}\right.$,
从而有$\left\{\begin{array}{l}{{x}_{1}=7x-2y}\\{{y}_{1}=3x-y}\end{array}\right.$.
代入方程x-y+1=0得直线l2的方程4x-y+1=0.(10分)

点评 本题考查矩阵变换,考查矩二阶矩阵的乘法法则,以及求出直线方程利用矩阵的变换所对应的方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为$\sqrt{6}$,则圆O的方程为x2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,2]内任取两个实数a,b,则方程x2-ax+b=0有两根x1,x2,且x1<1<x2的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等差数列{an}中,a1=25,d=-2,求{an}的前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求方程2${\;}^{{x}^{2}+x}$=8x+1的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图为焦点在x轴上的椭圆,且离心率e=$\frac{\sqrt{2}}{2}$,且过点A(-2,1),有椭圆上异于点A的点P出发的光线射到点A处被直线y=1反射后交椭圆于点Q(点Q与点P不重合).
(1)求椭圆的标准方程;
(2)当反射光线AQ过点(0,-3)时,求△OAP的面积;
(3)求证:直线PQ的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正三棱锥的底面边长为3,高为h,若正三棱锥的侧面积与体积的比为4$\sqrt{3}$,则正三棱锥的高为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x+x-2的零点所在区间是(  )
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x2-aln(x+2),g(x)=xex,且f(x)存在两个极值点x1、x2,其中x1<x2
(1)求实数a的取值范围;
(2)求g(x)在区间(-2,0)上的最小值;
(3)证明不等式:$\frac{f({x}_{1})}{{x}_{2}}$<-1.

查看答案和解析>>

同步练习册答案