精英家教网 > 高中数学 > 题目详情
4.已知线性方程组的增广矩阵为$({\begin{array}{l}1&{-1}&-3\\ a&3&4\end{array}})$,若该线性方程组的解为$({\begin{array}{l}{-1}\\ 2\end{array}})$,则实数a=2.

分析 由已知得$\left\{\begin{array}{l}{x-y=-3}\\{ax+3y=4}\end{array}\right.$,把x=-1,y=2,能求出a的值.

解答 解:∵线性方程组的增广矩阵为$({\begin{array}{l}1&{-1}&-3\\ a&3&4\end{array}})$,该线性方程组的解为$({\begin{array}{l}{-1}\\ 2\end{array}})$,
∴$\left\{\begin{array}{l}{x-y=-3}\\{ax+3y=4}\end{array}\right.$,
把x=-1,y=2,代入得-a+6=4,解得a=2.
故答案为:2.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意线性方程组的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在区间[0,2]内任取两个实数a,b,则方程x2-ax+b=0有两根x1,x2,且x1<1<x2的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知正三棱锥的底面边长为3,高为h,若正三棱锥的侧面积与体积的比为4$\sqrt{3}$,则正三棱锥的高为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x+x-2的零点所在区间是(  )
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.把一个含45°角的直角三角板BEF和一个正方形ABCD叠放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)
(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.
猜想与发现:
(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.
①MB,BN的数量关系是相等;
②MB,BN的位置关系是垂直.
变式与探究:
(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,l4和l1、l2分别交于C、D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3.点P在线段AB上.
(1)若∠1=22°,∠2=33°,则∠3=55°
(2)试找出∠1,∠2,∠3之间的等量关系说明理由.
(3)应用(2)中的结论解答下题:
如图2,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数.
(4)如果点P在直线l3上且在A、B两点外侧运动时,其他条件不变,试探究∠1、∠2、∠3之间的关系.(点P和A、B两点不重合,直接写出结论即可)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax3-3x2+1(a>0),g(x)=lnx
(Ⅰ)求函数f(x)的极值;
(Ⅱ)用max{m,n}表示m,n中的最大值.设函数h(x)=max{f(x),g(x)}(x>0),讨论h(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=x2-aln(x+2),g(x)=xex,且f(x)存在两个极值点x1、x2,其中x1<x2
(1)求实数a的取值范围;
(2)求g(x)在区间(-2,0)上的最小值;
(3)证明不等式:$\frac{f({x}_{1})}{{x}_{2}}$<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2.设∠AOC=xrad.
(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.

查看答案和解析>>

同步练习册答案