分析 (I)令f′(x)=0求出f(x)的极值点,得出f(x)的单调性与单调区间,从而得出f(x)的极值;
(II)对x和a的范围进行讨论得出f(x),g(x)在(0,+∞)上的单调性,利用单调性及最值判断f(x),g(x)的零点个数,从而得出h(x)的零点个数.
解答 解:( I)f′(x)=3ax2-6x=3x(ax-2).
令f′(x)=0,得x1=0,x2=$\frac{2}{a}$.
∵a>0,x1<x2,
f′(x)及f(x)符号变化如下,
| x | (-∞,0) | 0 | (0,$\frac{2}{a}$) | $\frac{2}{a}$ | ($\frac{2}{a}$,+∞) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
点评 本题考查了导数与函数的单调性的关系,函数最值的求法,函数零点个数的判断,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 是否近视 | 1~50 | 951~1000 | 合计 |
| 年级名次 | |||
| 近视 | 41 | 32 | 73 |
| 不近视 | 9 | 18 | 27 |
| 合计 | 50 | 50 | 100 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 1.5 | C. | 2 | D. | 2.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|1≤x≤2} | B. | {x|2<x≤4} | C. | {x|1≤x<2} | D. | {x|2≤x<4} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com