精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\frac{1}{x}$-log2x,在下列区间中,函数f(x)有零点的是(  )
A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)

分析 首先判断函数f(x)=$\frac{1}{x}$-log2x在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.

解答 解:易知函数f(x)=$\frac{1}{x}$-log2x在(0,+∞)上是减函数,且连续;
f(1)=1-0=1>0,f(2)=$\frac{1}{2}$-1=-$\frac{1}{2}$<0;
故函数f(x)有零点的区间是(1,2);
故选:B.

点评 本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知两个向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为30°,|$\overrightarrow{a}$|=$\sqrt{3}$,$\overrightarrow{b}$为单位向量,$\overrightarrow{c}$=t$\overrightarrow{a}$+(1-t)$\overrightarrow{b}$,则|$\overrightarrow{c}$|的最小值为$\frac{\sqrt{3}}{2}$.若$\overrightarrow{b}$•$\overrightarrow{c}$=0,则t=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,正方形ABCD的边长为2,M,N分别为边BC,CD上的动点,且∠MAN=45°,则$\overrightarrow{AM}•\overrightarrow{AN}$的最小值为8($\sqrt{2}$-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若正四面体ABCD的棱长为1,则它的外接球体积为(  )
A.$\frac{\sqrt{6}}{8}$πB.$\frac{3}{2}$πC.$\frac{\sqrt{6}}{2}$πD.$\frac{\sqrt{3}}{4}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={x|lg(1-x)<0},集合B={x||x-1|<2},则A∩B=(  )
A.(-1,0)B.(0,3)C.(-1,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.命题p:关于x的不等式x2+2ax+4>0,对一切x∈R恒成立; 命题q:函数f(x)=(3-2a)x在R上是增函数.若p或q为真,p且q为假,则实数a的取值范围为(-∞,-2]∪[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)是定义域为R的奇函数,当x>0时,f(x)=x(x-2),当x<0时,f(x)=-x(x+2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求过点(1,-1),且与直线x+4y-7=0垂直的直线方程.
(Ⅱ)求过点(1,-1),且与直线x+4y-7=0平行的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设全集U=R,A={x∈R|a≤x≤2|,B={x|y=$\sqrt{3x-2}$+ln(2-x)}.
(1)若a=1,求A∪B,(∁UA)∩B;   
(2)若B⊆A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案